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Chapter 1

Alternating Current Network
Theory

In this chapter we will study the properties of electronic networks prop-
agating sinusoidal voltages and currents (alternate current/AC regime).
In other words, voltage or current sources connected to the networks pro-
duce electromagnetic waves whose frequency can be ideally changed from
0 to ∞.

Considering an electromagnetic wave whose frequency f is 1MHz, (
typical maximum frequency f used in this course of analog electronics)
and the electromagnetic field propagates at a speed c = 3 · 108m/s (1’/ns),
the wavelength λ = c/f will be usually much greater than several hundred
feet, hundreds to thousands of times greater than the physical sizes of our
electronic circuits. Consequently, each individual circuit component will
have at any instant, to a high degree of accuracy, zero net total current
flowing in or out of all its connections. Such an element is known as a
lumped element.

When fields wavelength becomes comparable to the size of the circuit
components, fields and currents can vary across the element, making it
a distributed element. Examples of distributed elements include antennas,
microwave waveguides, and the electrical power distribution grid.

For two-terminal lumped elements, we can conclude that at any in-
stant, the current flowing out of one terminal must equal the current flow-
ing into the other, so we can simply refer to the current flowing through the
element and the potential difference (voltage difference or voltage drop)
between the two terminals.

9



10 CHAPTER 1. ALTERNATING CURRENT NETWORK THEORY

The AC analysis of such circuits is valid once the network is at the
steady state, i.e. when the transient behavior (such as those ones produced
by closing or opening switches) is extinguished.

In general, if we have a sinusoidal signal (sinusoidal voltages, or cur-
rents) applied to a circuit having at least one input and one output, we will
expect a change in the amplitude and phase at the output. The determi-
nation of these quantities for quite simple circuits can be very complex. It
is indeed important to develop a convenient representation of sinusoidal
signals to simplify the analysis of circuits in the AC regime.

1.1 Symbolic Representation of a Sinusoidal Sig-
nals, Phasors

A sinusoidal quantity (a sinusoidal current or voltage for example) ,

A(t) = A0 sin(ωt+ ϕ),

is univocally characterized by the amplitude A0, the angular frequency ω,
and the initial phase ϕ. The phase ϕ corresponds to a given time shift t∗ of
the sinusoid (ωt∗ = ϕ ⇒ t∗ = ϕ/ω).

We can indeed associate to A(t) an applied vector ~A in the complex
plane with modulus |A| = A0 ≥ 0, rotating counter-clockwise around the
origin O with angular frequency ω and initial angle ϕ (see figure 1.1). Such
vectors are called phasors.

The complex representation of the phasor is1

~A = A0e
j(ωt+ϕ), j =

√

−1,

or
~A = x + jy,

{

x = A0 cos(ωt+ ϕ)
y = A0 sin(ωt+ ϕ)

Extracting the real and the imaginary part of the phasor, we can easily
compute its amplitude A0 and phase ϕ, i.e.

|A| =
√

<[ ~A]2 + =[ ~A]2 ϕ = arg [A] = arctan





=[ ~A]

<[ ~A]



 (t = 0),

1To avoid confusion with the electric current symbol i, it is convenient to use the sym-
bol j for the imaginary unit.
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0A

t0

t =

T=2π/ω

ϕ/ω*

0 x

ϕ

ϕ+ω
A(t)

A(0)

jy

A(t)

A

t

Figure 1.1: Sinusoidal quantityA(t) and its phasor representation ~A at the
initial time t = 0 and at time t.

and reconstruct the real sinusoidal quantity. It is worth noting that in gen-
eral, amplitude A0 and phase ϕ are functions of the frequency.

The convenience of this representation will be evident, once we con-
sider the operation of derivation and integration of a phasor.

1.1.1 Derivative of a Phasor
Computing the derivative of a phasor ~A, we get

d ~A

dt
= jωA0e

j(ωt+ϕ) = jω ~A,

i.e. the derivative of a phasor is equal to the phasor times jω.

1.1.2 Integral of a Phasor

The integral of a phasor ~A is
∫ t

t0

~Adt′ =
1

jω

[

A0e
j(ωt+ϕ) − A0e

j(ωt0+ϕ)
]

=
1

jω
~A + const.,

i.e. the integral of a phasor is equal to the phasor divided by jω plus a
constant. For the AC regime we can assume the constant to be equal to
zero without loss of generality.
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Figure 1.2: Generic representation of a network

1.2 Network Definitions

To make easier the understanding of network basic theorems, some more
or less intuitive definitions must be stated.

An electronic network or circuit is a set of electronic components/devices
connected together to modify and transmit/transfer energy/information.
This information is generally called an electric signal or simply a signal.

To graphically represent a network, we use a set of coded symbols with
terminals for the network lumped elements and lines for connections. These
lines propagate the signal among the elements without changing it. The
elements change the propagation of the electric signals.

A network node is a point where more than two network lines connect.
A network loop, or mesh, is any closed network line. To determine a mesh

it is sufficient to start from any point of the circuit and come back running
trough the network to the same point without passing through the same
point.

Quantities defining signal propagation are voltages V across the ele-
ments and currents I flowing through them.

Solving an electronic network means determining the currents or the
voltages of each point of it.

Figure 1.2 shows a generic portion of a network with 4 visible nodes,
and 3 visible meshes. The empty boxes are the electronic elements of the
network and their size is just for convenience and don’t correspond to any
physical dimensions. These are the points in the network where voltages
and currents are modified.
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1.2.1 Series and Parallel

Let’s consider the two different connection topologies shown in figure 1.3,
the parallel and the series connections.

A set of components is said to be in series if the current flowing through
them and anywhere in the circuit is the same .

A set of components is said to be in parallel if the voltage difference
between them is the same.

B 

A

A B 

Figure 1.3: Considering the points A, and B, the components of the left circuit
are in parallel, and those in the right circuit are in series.

1.2.2 Active and Passive Components

Circuit components can be divided into two categories: active and passive
components. Active components are those devices that feed energy into
the network. Voltage and current sources are active components. Ampli-
fiers are also active components.

Passive components are those components, that do not feed energy to
the network. Resistors, capacitors, inductors are typical passive compo-
nents.

In general, both active and passive components dissipate energy.

1.3 Kirchhoff’s Laws

Kirchhoff’s laws, are fundamental for the solution of an electronic circuit.
They can be derived from Maxwell’s equations in the approximation of
slowly varying field.



14 CHAPTER 1. ALTERNATING CURRENT NETWORK THEORY

Kirchhoff’s Voltage Law (KVL): The algebraic sum of the voltage differ-
ence vk at the time t around a loop must be equal to zero at all times, i.e.

∑

k

vk(t) = 0

Kirchhoff’s Current Law(KCL): The algebraic sum of the currents ik at the
time t entering and leaving a node must be equal to zero at all times, i.e.

∑

k

ik(t) = 0.

These laws hold for phasors as well.

1.4 Passive Ideal Components with Phasors
Let’s rewrite the I-V characteristic for the passive ideal components using
the phasor notation. For sake of simplicity, we remove the arrow above the
phasor symbol. To avoid ambiguity, we will use upper case letters to indi-
cate phasors, and lower case letters to indicate a generic time dependent
signal.

1.4.1 The Resistor
For time dependent signals, Ohm’s law for a resistor with resistance R is

v(t) = Ri(t).

V VI

t=0
jω

I R

Introducing the phasor I = I0e
jωt (see figure above), we get

v(t) = RI0e
jωt,
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and in the phasor notation
V = R I.

The frequency and time dependence are implicitly contained in the
phasor current I .

1.4.2 The Capacitor

The variation of the voltage difference dv across a capacitor with capaci-
tance C due to the amount of charge dQ, is

dv =
dQ

C
.

If the variation happens in a time dt and

i(t) =
dQ

dt
,

we will have
dv(t)

dt
=

1

C
i(t), ⇒ v(t) =

1

C

∫ t

0
i(t′)dt′ + v(0).

C V

V

I

t=0
jω

I

For sinusoidal time dependence , we introduce the phasor I = I0e
jωt

(see figure above), and get

v(t) =
1

C

∫ t

0
I0e

jωt′dt′ + v(0),

Using the phasor notation and supposing that for t = 0 the capacitor is
discharged, we finally get

V =
1

jωC
I, , v(0) = 0.
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1.4.3 The Inductor

The induced voltage v(t) of an inductor with inductance L, is

v(t) = L
di(t)

dt
.

VL I
V t=0
jω

I

Introducing the phasor I = I0e
jωt (see figure above), we get

v(t) = L
d

dt
I0e

jωt,

and in the phasor notation

V = jωL I.

1.5 The Impedance and Admittance Concept
Let’s consider a generic circuit with a port, whose voltage difference and
current are respectively the phasors V = V0e

j(ωt+ϕ), and I = I0e
j(ωt+ψ). The

ratio Z between the voltage difference and the current

Z(ω) =
V

I
=
V0

I0
ej(ϕ−ψ).

is said to be the impedance of the circuit.
The inverse

Y (ω) =
1

Z(ω)

is called the admittance of the circuit.
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For example, considering the results of the previous subsection, the
impedance of a resistor, a capacitor, and an inductor are respectively

ZR = R, ZC(ω) =
1

jωC
, ZL(ω) = jωL,

and the admittances are

YR =
1

R
, YC(ω) = jωC, YL(ω) =

1

jωL
.

In general, the impedance or admittance of a circuit port is a complex
function, which depends on the angular frequency ω. Quite often they are
graphically represented by plotting the magnitude|Z(ω)|or |Y (ω)|in a dou-
ble logarithmic scale and the phase arg [Z(ω)]or arg [Y (ω)] in a logarithmic
scale.

For completeness let´ s introduce some other definitions:

• The real part of the impedance Z(ω) is called resistance.

• The imaginary part of the impedance Z(ω) is called reactance.

• The real part of the admittance Y (ω) is called conductance.

• The imaginary part of the admittance Y (ω) is called susceptance.

1.5.1 Impedance in Parallel and Series
It can be easily demonstrated that the same laws for the total resistance of
a series or a parallel of resistors hold for the impedance

Ztot = Z1 + Z2 + ... + ZN , (impedances in series)

1

Ztot
=

1

Z1
+

1

Z1
+ ...+

1

ZN
, (impedances in parallel)

It is left as exercise to derive the homologue laws for the admittance.

1.5.2 Ohm’s Law for Sinusoidal Regime
Thanks to the impedance concept, we can generalize Ohm’s law and write
the fundamental equation (Ohm’s law for sinusoidal regimes)

V (ω) = Z(ω)I(ω).
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1.6 Two-Port Networks

IoIi
Vi VoωH(  )

− −

++ A

B

C

D

Port 1 Port 2

Figure 1.4: Two-port network circuit representation with terminals B and
D connected. The voltage difference signs and current directions are con-
ventional.

A linear circuit with one pair of input terminals A, B and one pair out-
put terminals C, D is called two-port network (see figure 1.4). The electronic
circuits we will consider here, are two-port network with terminals B and
C connected together[2]. In this case, to completely characterize the be-
havior of a two-port network, we can study the response of the output Vo
as a function of the angular frequency ω of a sinusoidal input Vi.

In general, we can write

Vo(ω) = H(ω)Vi(ω), or H(ω) =
Vo(ω)

Vi(ω)
,

where the complex function H(ω) is called the transfer function or frequency
response of the two-port network. The transfer function contains the infor-
mation of how the amplitude and the phase of the input changes when it
reaches the output. Knowing the transfer function of this particular two-
port network, we characterize the circuit2. The definition of H(ω) suggests
a way of measuring the transfer function. In fact, exciting the input with
a sinusoidal wave, we can measure at the output the amplitude and the
phase lead or lag respect to the input signal.

2A deeper understanding of the transfer function of a circuit requires the concept of
the Fourier transform and the Laplace transform and the convolution theorem. See [2]
appendix C
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R

C
IVin Vout

I

Figure 1.5: RC low-pass filter circuit.

1.6.1 Bode Diagrams

To graphically representH(ω), it is common practice to plot the magnitude
|H(ω)| (gain) in a double logarithmic scale, and the phase arg [H(ω)] using
a logarithmic scale for the angular frequency. These plots are called Bode
diagrams. Units for ω are normally rad/s or Hz. The magnitude is quite
often expressed in decibels dB (see appendix C)

XdB = 20 log10X

For example 20dB = 10, 40dB=100, etc... Practically, plotting a quantity
in dB (which is not a units symbol such as m,s,kg, Ω ) corresponds to plot
the quantity on a logarithmic scale.

The phase can be expressed in radians (rad) or in degrees (deg).

Logarithmic scales have the advantage of emphasizing asymptotic trends
and the disadvantage of flattening small variations. In other words, varia-
tions much smaller that the range of the plotted values become quite often
indistinguishable in a logarithmic scale. To find out such kind of behavior,
it is a good practice to look at magnitudes in both linear and logarithmic
plots.

The Asymptotic Bode diagram [1], a simplification of the frequency
response of a system is a convenient approximation of the characteristics
of H(ω).
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Figure 1.6: RC low-pass filter circuit transfer function.

1.6.2 The RC Low-Pass Filter

Figure 1.5 shows the RC low-pass filter circuit. The input and output voltage
differences are respectively3

Vin = ZinI =

(

R +
1

jωC

)

I,

Vout = ZoutI =
1

jωC
I,

and the transfer function is indeed

H(ω) =
Vout
Vin

=
1

1 + jτω
, τ = RC.

or
H(ω) =

1

1 + jω/ω0

, ω0 =
1

RC
.

3Vout as function of Vin can be directly calculated using the voltage divider equation.
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Computing the magnitude and phase of H(ω), we obtain

|H(ω)| =
1√

1 + τ 2ω2

arg(H(ω)) = − arctan
(

ω

ω0

)

Figure 1.6 shows the magnitude and phase of H(ω). The parameter τ
and ω0 are called respectively the time constant and angular cut-off frequency
of the circuit. The cut-off frequency is the frequency where the output Vout
is attenuated by a factor 1/

√
2.

It is worthwhile to analyze the qualitative behavior of the capacitor
voltage difference Vout at very low frequency and at very high frequency.

For very low frequency the capacitor is an open circuit and Vout is es-
sentially equal to Vin. For high frequency the capacitor acts like a short
circuit and Vout goes to zero.

The capacitor produces also a delay as shown in the phase plot. At
very low frequency the Vout follows Vin (they have the same phase). The
output Vout loses phase (ωt = ϕ⇒ t = ϕ/ω) when the frequency increases.
The output Vout starts lagging due to the negative phase ϕ, and then ap-
proaches a maximum delay at a phase shift of −π/2.

1.6.3 The RC High-Pass Filter

Figure 1.7 shows the RC high-pass filter circuit. The input and the output
voltage differences are respectively

Vin = ZinI =

(

R +
1

jωC

)

I,

Vout = ZoutI = RI,

and indeed the transfer function is

H(ω) =
Vout
Vin

=
jωτ

1 + jτω
, τ = RC.

or
H(ω) =

jω/ω0

1 + jω/ω0

, ω0 =
1

RC
.
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IVin VoutR
C

I

Figure 1.7: RC high-pass filter circuit

Computing the magnitude and phase of H(ω), we obtain

|H(ω)| =
τω√

1 + τ 2ω2
,

arg(H(ω)) = arctan
(

ω0

ω

)

Figure 1.8 shows the magnitude and phase of H(ω). The definitions in
the previous subsection, for τ and ω0, hold for the RC high-pass filter.
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Figure 1.8: RC high-pass filter circuit transfer function.
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1.7 Ideal Sources

1.7.1 Ideal Voltage Source
An ideal voltage source is a source able to deliver a given voltage differ-
ence Vs between its leads independent of the load R attached to it (see
figure 1.9). It follows from Ohm’s law that a voltage source is able to pro-
duce the current I necessary to keep constant the voltage difference Vs
across the load R. The symbol for the ideal voltage source is shown in
figure 1.9.

Quite often, a real voltage source exhibits a linear dependence on the
resistive load R. It can be represented using an ideal voltage source Vs in
series with a resistor Rs called input resistance of the source. Applying
Ohm’s law, it can be easily shown that the voltage and current through
the load R are

V =
R

R +Rs

Vs, I =
Vs

R +Rs

.

If we assume

R � Rs, ⇒ V ' Vs, I ' Vs
R
.

Under the previous condition, the real voltage source approximates the
ideal case.

sV sV

+

−

VRI

V

I

Figure 1.9: Ideal voltage source.

1.7.2 Ideal Current Source
An ideal current source is a source able to deliver a given current Is that
does not depend on the load R attached to it (see figure 1.10). It follows
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from Ohm’s law that an ideal current source is able to produce the voltage
difference V across the load R needed to keep Is constant. The symbol for
the ideal current source is shown in figure 1.10.

A real current source exhibits a dependence on the resistive load R,
which can be represented using an ideal current source Is in parallel with
a resistor Rs. Applying Ohm’s law and the KCL, it can be easily shown
that the voltage and current through the load R are

I =
Rs

R +Rs
Is, V =

RsR

Rs +R
Is.

If we suppose

Rs � R, ⇒ I ' Is, V ' RIs � 0

Under the previous condition, the real current source approximates the
ideal case.

sVIs

Is

VRI

V

I

Figure 1.10: Ideal current source.

1.8 Equivalent Networks
Quite often, the analysis of a network becomes easier by replacing part
of it with an equivalent and simpler network or dividing it into simpler
subnetworks.

For example, the voltage divider is an equation easy to remember that
allows to divide a complex circuit in two parts simplifying the search of
the solution.

Thévenin and Norton theorems give us two methods to calculate equiv-
alent circuits which behave like the original circuit, as seen from two points
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V2

VTot

Z1

Z2

I

Figure 1.11: Voltage divider circuit.

of it. The techniques briefly explained in this section, will be then exten-
sively used in the next chapters .

1.8.1 Voltage Divider

The voltage divider equation is applicable every time we have a circuit
which can be re-conducted to a series of two simple or complex compo-
nents. Considering the circuit branch of figure 1.11 and applying Ohm’s
law, we have

VTot = (Z1 + Z2)I

V2 = Z2I

and indeed

V2 =
Z2

Z1 + Z2
VTot,

which is the voltage divider equation.

1.8.2 Thévenin Theorem

Thévenin theorem allows us to find an equivalent circuit for a network
seen from two points A and B using an ideal voltage source VTh in series
with an impedance ZTh.



26 CHAPTER 1. ALTERNATING CURRENT NETWORK THEORY

ZTh

VThBlack Box
+

−
ZLZL

Figure 1.12: Thévenin equivalent circuit illustration.

The equivalence means that if we place a load ZL between A and B
in the original circuit (see figure 1.12) and measure the voltage VL and the
current IL across the load, we will obtain exactly the same VL and IL if ZLis
placed in the equivalent circuit. This must be true for any load we connect
between the points A and B .

The previous statement and the linearity of the circuit can be used to
find VTh and ZTh. In fact, if we consider ZL = ∞ (open circuit, OC), we
will have

VTh = VOC .

The Voltage VTh is just the voltage difference between the two leads A
and B.

For ZL = 0 (short circuit, SC) we must have

ISC =
VTh
ZTh

=
VOC
ZTh

.

and therefore
ZTh =

VOC
ISC

.

The last expression says that the Thévenin impedance is the impedance
seen from the points A and B of the original circuit.

If the circuit is known, the Thévenin parameter can be calculated in
the case for the terminals A and B open. In fact, VTh is just the voltage
across A and B of a known circuit. Replacing the ideal voltage sources
with short circuits (their resistance is zero) and ideal current sources with
open circuits ( their resistance is infinite), we can calculate the impedance
ZTh seen from terminals A and B.

Considering the previous results, we can finally state Thévenin theo-
rem as follows:
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Vs
+

−
V0

R1

R Th

VTh

R2

R0R0

V0

+

−

A

B

A

B

+

−
+

−

Figure 1.13: Thévenin equivalent circuit example

Any circuit seen from two points can be replaced by an ideal voltage source of
voltage VTh in series with impedance ZTh. VTh is the voltage difference between
the two point of the original circuit. ZTh is the impedance seen from these two
points, short-circuiting all the ideal voltage generators and open-circuiting all the
ideal current generators.

Example:

We want to find the Thévenin circuit of the network enclosed in the gray
rectangle of figure 1.13. To find RTh, and VTh we have to disconnect the
circuit in the points A and B. In this case, the voltage difference between
these two points, thanks to the voltage divider equation, is

VTh =
R1

R1 +R2
Vs.

Short circuiting Vs we will have R1 in parallel with R2. The Thévenin
resistance RTh will be indeed

RTh =
R1R2

R1 +R2
.
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INoBlack Box Z Z
NoL LZ

Figure 1.14: Norton equivalent circuit illustration.

1.8.3 Norton Theorem
Any kind of active network seen from two points A and B can by replaced by an
ideal current generator INo in parallel with a impedance ZNo. The current INo
corresponds to the short-circuit current of the two points A and B. The Resistance
ZNo is the Thévenin resistance ZNo = ZTh .

The proof of this theorem is left as exercise.
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1.9 First Laboratory Week

This first laboratory class is essentially intended to help the student to be-
come acquainted with the laboratory instrumentation (function generator,
digital multimeter, circuit bread board, connectors), and with the use of
passive components and their mathematical descriptions.

1.9.1 Pre-laboratory Problems

To complete the preparatory problems, it is recommended to read sections
1.1 to 1.6, and appendix E for the laboratory procedure.

1. Considering the figure below (a “snapshot” of an oscilloscope dis-
play), determine the peak to peak amplitude, the DC offset, the fre-
quency of the two sinusoidal curves, and the phase shift between
the two curves (channels horizontal axis position is indicated by an
arrow and the channel name on the right of the figure).
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1. Sketch in a graph the magnitude and phase of the RC series cir-
cuit input impedance Zi. Determine the two asymptotic behavior
of |Zi| ,i.e. where the resistive and the capacitive behavior dominate.

2. Assuming that R2 � R1, repeat the previous problem for the follow-
ing circuit

Vo

I

R
C RVi 2

1

Hint: in this case there are three dominant behaviors, two resistive
and one capacitive, and two frequencies which separate the three
dominant behaviors.

3. The circuit below includes the impedance of the input channel of the
CRT oscilloscope, and Vs is indeed the real voltage measured by the
instrument.

Oscilloscope Input
Stage

I

Cs sRVin Vs

R

C VC

Find the voltage Vs(ω) , and the angular cut-off frequency ω0 of the
transfer function Vs/Vin( i.e. the value of ω for which |Vs/Vin| =
1/
√

2).
Show that for ω = 0 the Vs(ω) formula simplifies and becomes the
resistive voltage divider equation.
Demonstrate that the conditions to neglect the input impedance of
the oscilloscope are the following :

C � Cs, R � Rs

(Hint: use the voltage divider equation to write VC .)
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4. Considering the previous circuit, calculate the value of R needed to
obtain Vin ' Vs with a fractional systematic error of 1%, if ω = 0rad/s
and Rs = 1MΩ.

5. Determine the values of R, and C needed to get a RC series circuit
cut-off frequency of 20kHz. Choose values which make the oscillo-
scope impedance negligible (Rs = 1MΩ, Cs = 25pF).

1.9.2 Procedure

Whenever you work with electronic circuits as a beginner (all students are
considered beginners; it doesn’t matter which personal skills they already
have), some extra precautions must be taken to avoid injuries. These are
the main ones:

• NEVER CONNECT INSTRUMENT PROBES OR LEADS TO AN OUTLET
OR MORE IN GENERAL TO THE POWER LINE.

• DO NOT TRY TO FIX/IMPROVE AN INSTRUMENT BY YOURSELF.

• DO NOT POWER AN INSTRUMENT WHICH IS NOT WORKING OR DIS-
ASSEMBLED.

• DO NOT TOUCH A DISASSEMBLED OR PARTIALLY DISASSEMBLED IN-
STRUMENT, EVEN IF IT IS NOT POWERED.

• WEAR PROTECTIVE GOGGLES EVERY TIME YOU USE A SOLDERING
IRON.

• TO AVOID EXPLOSIONS, NEVER USE A SOLDERING IRON ON A POW-
ERED CIRCUIT AND BATTERIES.

• PLACE A FAN TO DISPERSE SOLDER VAPORS DURING SOLDERING
WORK.

Read carefully the text before starting the laboratory measurements.
BNC cables and wires terminated with banana connectors are available

to connect the circuit under measurement to the instruments.
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BNC4 cables, a diffused type of radio frequency (RF) coaxial shielded
cable, have an intrinsic and quite well defined capacitance due to their
geometry as shown in the figure below

C0

A

B

C

D

A C

DB

They have typical linear density capacitance ∆C/∆l '= 98pF/m. Wires
terminated with banana connectors have smaller capacitance than BNC
cables but not as constant as BNC cables (Why?).

1. Build a RC low-pass or a RC high-pass filter with a cut-off frequency
between 10kHz to 100kHz. Choose components values which make
the perturbation of the input impedance of the oscilloscope negligi-
ble. Then, do the following

(a) Verify the circuit transfer function, and in particular for frequen-
cies ν � ν0 and ν � ν0

(b) Find the cut-off frequency νo knowing the expected magnitude
and phase values, and compare with the theoretical values

(c) Change the capacitor value to be comparable to the oscilloscope
input capacitance or the BNC cable capacitance and experimen-
tally find the new cut-off frequency ν1. Compare with the theo-
retical value.

(d) Drive the circuit input with a square wave and verify the tran-
sient response of the circuit.

2. Measure the output impedance of the function generator for a given
fixed sinusoidal frequency. Place at least three different loads to per-
form the measurement.

4“BNC” seems to stand for Bayonet Neill Concelman (named after Amphenol engi-
neer Carl Concelman). Other sources claims that the acronym means British Navy Con-
nector. What is certain is that the BNC connector was developed in the late 1940’s as a
miniature version of the type C connector (what does the “C” stand for ?)
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Chapter 2

Resonant Circuits

2.1 Introduction

Resonators, one of the most useful and used device, are essentially phys-
ical systems that present a more or less pronounced peak in the transfer
function.

In general, their performance is measured by a dimensionless param-
eter named quality factor Q, which characterizes the sharpness of the res-
onant peak. The higher the quality factor the sharper is the peak and the
better is the resonator.

Quite often, the major issues of building a resonator are to obtain very
high quality factors and good stability. For example, mechanical oscil-
lators made of fused silica fibers under load, can achieve quality factors
above 108 in the acoustic band[?], and good stability if they are thermo-
stabilized. Very high quality factors in electronics can be achieved using
piezoelectric oscillator or quartz oscillators. Lasers and resonant cavities
made of mirrors can be used to build resonators in the optical frequency
range . The same principle can be applied in the microwave range. Ther-
mal stabilization is always a key ingredient to obtain high stability.

Resonators made with electronic passive components, reaching quality
factors values up to 10-100 or more, are quite easy to realize. In the next
sections we will study two typical resonant circuits, the LCR series and
LCR parallel circuits.

35
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2.2 The LCR Series Resonant Circuit
Figure 2.1 shows the so called LCR series resonant circuit. Depending on
voltage difference, we are considering as the circuit output ( the capacitor,
the resistor, or the inductor), this circuit shows a different behavior. Let’s
study indeed in the frequency domain, and the transient response of this
passive circuit for each one of the output.

2.2.1 Frequency Response with Capacitor Voltage Differ-
ence as Circuit Output

Considering the voltage difference VC across the capacitor the circuit out-
put, we will have

Vin =

(

R + jωL+
1

jωC

)

I,

VC =
1

jωC
I ,

and the transfer function will be

HC(ω) =
1

jωRC − ω2LC + 1
.

For sake of simplicity it is convenient to define the two following quan-
tities

ω2
0 =

1

LC
, Q =

1

R

√

L

C
= ω0

L

R

The parameter Q is the quality factor of the circuit, and the angular
frequency ω0 is the resonant frequency of the circuit if R = 0.

Considering the previous definitions, and after some algebra, HC(ω)
becomes

HC(ω) =
ω2

0

ω2
0 − ω2 + jω ω0

Q

. (2.1)

Computing the magnitude and phase of HC(ω), we obtain

|HC(ω)| =
ω2

0
√

(ω2
0 − ω2)

2
+
(

ω ω0

Q

)2
,



2.2. THE LCR SERIES RESONANT CIRCUIT 37

VL

VR

VC
C

Vi

R

L

Figure 2.1: LCR series circuit.

arg [HC(ω)] = − arctan

(

1

Q

ω0ω

ω2
0 − ω2

)

.

The magnitude has maximum for

ω2
C = ω2

0

(

1 − 1

2Q2

)

,

and the maximum is

|HC(ωC)| =
Q

√

1 − 1
4Q2

.

If Q� 1 then ωC ' ω0, and |HC(ωC)| ' Q.

Far from resonance ωC , the approximate behavior of |HC(ω)| is

ω � ωC ⇒ |HC(ω)| ' 1 ,

ω � ωC ⇒ |HC(ω)| ' ω2
0

ω2
.

Figure 2.2 shows the magnitude and phase of HC(ω). In this case the
circuit is a low pass filter of the second order because of the asymptotic
slope 1/ω2.
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Bode Diagram
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Figure 2.2: Transfer function HC(ω) of the LCR series resonant circuit with
a resonant angular frequency ωC ' 10.7krad/s.

2.2.2 Frequency Response with Inductor Voltage Difference
as Circuit Output

Considering the voltage difference VL across the inductor as the circuit
output, we will have instead

HL(ω) = − ω2LC

jωRC − ω2LC + 1
.

Using the definition of Q, and ω0 and after some algebra, HL(ω) be-
comes

HL(ω) =
−ω2

ω2
0 − ω2 + jω ω0

Q

(2.2)
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Computing the magnitude and phase of HL(ω), we obtain

|HL(ω)| =
ω2

√

(ω2
0 − ω2)

2
+
(

ω ω0

Q

)2

arg [HL(ω)] = arctan

(

1

Q

ωω0

ω2
0 − ω2

)

The magnitude has a maximum for

ω2
L = ω2

0

1

1 − 1
2Q2

,

and the maximum is

|HL(ωL)| =
Q

√

1 − 1
4Q2

.

If Q� 1 then ωL ' ω0, and |HL(ωL)| ' Q.

Far from resonance ωL, the approximate behavior of |HL(ω)| is

ω � ωL ⇒ |HL(ω)| ' ω2

ω2
0

ω � ωL ⇒ |HL(ω)| ' 1

Figure 2.3 shows the magnitude and phase of HL(ω). In this case the
circuit is a second order high pass filter.
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Bode Diagram
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Figure 2.3: Transfer function HL(ω) of the LCR series resonant circuit with
a resonant angular frequency ωL '??.?krad/s.

2.2.3 Frequency Response with the Resistor Voltage Dif-
ference as Circuit Output

Considering the voltage difference across the resistor as the circuit output,
we will have instead

HR(ω) =
jωRC

1 − ω2LC + jωRC
.

Using the definition of Q and ω0, and after some algebra, HR(ω) be-
comes

HR(ω) =
jω ω0

Q

ω2
0 − ω2 + jω ω0

Q

. (2.3)
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Computing the magnitude and phase of HR(ω), we obtain

|HR(ω)| =
ω0

Q
ω

√

(ω2
0 − ω2)

2
+
(

ω ω0

Q

)2

arg [HR(ω)] = arctan

(

Q
ω2

0 − ω2

ωω0

)

The magnitude has maximum for

ω2
R = ω2

0,

and the maximum is

|HR(ωR)| = 1 .

Far from the resonance ωR, the approximate behavior of |HR(ω)| is

ω � ωR ⇒ |HR(ω)| ' 1

Q

ω

ω0

ω � ωR ⇒ |HR(ω)| ' ω0

ω

Figure 2.4 shows the magnitude and phase of HR(ω). In this case the
circuit is a first order band pass filter.
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Bode Diagram
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Figure 2.4: Transfer function HR(ω) of the LCR series resonant circuit with
resonant angular frequency ωR ' 10.8krad/s.

2.2.4 Transient Response
The equation that describes the LCR series circuit response in the time
domain is

vi = Ri+ L
di

dt
+

1

C

∫ t

0
i(t′)dt′ , (2.4)

where i(t) is the current flowing through the circuit and vi(t) is the input
voltage.

Supposing that

vi(t) =

{

v0, t > 0
0, t ≤ 0

,

and differentiating both side of eq. 2.4, we obtain the linear differential
equation
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R
di

dt
+ L

d2i

dt2
+

1

C
i = 0, t > 0

or, considering the definition of ω0, and Q,

d2i

dt2
+
ω0

Q

di

dt
+ ω2

0 i = 0.

The solutions of the characteristic polynomial equation associated with
the differential equation are

λ1,2 = −1

2

ω0

Q
± ω0

√

1

2Q2
− 1.

As usual, we will have three different solutions depending on the dis-
criminant value

∆ =
1

2Q2
− 1 .

Under-damped Case: discriminant less than zero (Q > 1/
√

2)

In this case we have two complex conjugate roots and the differential equa-
tion solution is the typical exponential ring down

i(t) = i0e
−

ω0

2Q
t sin (ωCt+ ϕ0) , ω2

C = ω0

(

1 − 1

2Q2

)

.

Critically Damped Case: Discriminant equal to zero(Q = 1/
√

2)

In this case we have a critically damped current and no oscillation

i(t) = i0e
−

ω0

2Q
t
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Over-damped Case: Discriminant greater than zero (Q < 1/
√

2)

This is the case of two coincident solutions . We will have indeed, an
exponential decay (no oscillations)

i(t) = i0e
−

ω0

2Q
t
(

Ae−ωCt +Be+ωC t
)

, ω2
C = ω2

0

(

1 − 1

2Q2

)

,

Voltages across each single element can be easily computed consider-
ing the relation between v(t) and i(t).

Let’s just write the voltage across the capacitor for the under-damped
case. Considering that the integration operation in this case changes just
the phase and creates an offset, the voltage across the capacitor, neglecting
this offset, will be

vC(t) = v0e
−

ω0

2Q
t sin (ωCt+ ψ) .

2.3 The Tank Circuit or LCR Parallel Circuit.

Figure 2.5 shows the so called LCR parallel resonant circuit or tank circuit,
where the source depicted with an arrow inside a circle is an ideal cur-
rent source. The resistor of resistance r accounts for inductor resistance.
Let’s study the frequency and the transient response using the Thévenin
representation shown in figure 2.5.

Is
VoCR

L

r

Figure 2.5: The tank circuit.
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2.3.1 LCR Circuit Frequency Response
Using Thévenin theorem for the current source and R, the LCR parallel
circuit considering the equivalent circuit as shown in figure 2.5 where the
current source and the resistor R have been replaced with the Thévenin
circuit.

Considering that the current I of the current source can be written as

I =
Vi
R
,

I = Y Vo =

(

1

R
+

1

r + jωL
+ jωC

)

Vo,

we have
Vi
R

=

(

1

R
+

1

r + jωL
+ jωC

)

Vo (2.5)

Defining
1

r∗(ω)
+

1

jωL∗(ω)
=

1

r + jωL
, (2.6)

and
R∗ = R || r∗,

eq. 2.5 becomes
Vi
R

=

(

1

R∗
+

1

jωL∗
+ jωC

)

Vo

After some algebra, we will have

Vo
Vi

=
jωL∗

R∗ − ω2CL∗R∗ + jωL∗
. (2.7)

Generalizing the definition of ω0, and Q

ω∗

0 =
1

√

L∗(ω)C
, Q∗ = R∗(ω)

√

C

L∗(ω)
,

and substituting in eq. 2.7 we finally obtain

H(ω) =
jωω∗

0/Q
∗

(ω∗
0)

2 − ω2 + jωω∗
0/Q

∗
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Vo

−
sV

r

L

C

R

+

Figure 2.6: The tank circuit with the current source and the resistance R
replaced with the Thévenin equivalent circuit.

Let’s find the implicitly defined functions r∗, L∗. Using the term con-
taining the inductance L in eq. 2.6, we obtain

1

r + jωL
=

1

r
[

1 +
(

ωL
r

)2
] +

1

jωL
[

1 +
(

r
ωL

)2
] .

and finally

r∗(ω) = r

[

1 +
(

ωL

r

)2
]

, L∗(ω) = L

[

1 +
(

r

ωL

)2
]

2.3.2 Transfer Function

From the solution of the LCR parallel circuit we have

|H(ω)| =
ωω0

Q∗

√

(ω2
0 − ω2)

2
+
(

ωω0

Q∗

)2

arg(H(ω)) = arctan

{

Q∗
ω2

0 − ω2

ωω0

}

,

whose bode plots are shown in figure 2.7.
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Figure 2.7: Typical bode plot of a LCR parallel circuit with resonant angu-
lar frequency near the acoustic band. As expected , if r is not negligible
the magnitude doesn’t go to zero for ω → 0.

2.3.3 Simplest Case

It is worthwhile to notice that if r = 0 we will have much simpler expres-
sions, i.e.

ω0 =
1√
LC

, Q = R

√

C

L
.

and

H(ω) =
jωω0/Q

ω2
0 − ω2 + jωω0/Q

The magnitude and the phase will be
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|H(ω)| =
ωω0

Q
√

(ω2
0 − ω2)

2
+
(

ωω0

Q

)2

arg(H(ω)) = arctan

{

Q
ω2

0 − ω2

ωω0

}

,

2.3.4 High Frequency Approximation

For high frequency ω � 1, we have

r∗(ω) ' r
(

ω
L

r

)2

, ⇒ L∗ ' L

and ω0 becomes

ω0 '
1√
LC

.

Evaluating the several defined quantities at ω0, we will have

r∗(ω0) ' L

rC
,

R∗(ω0) ' LR

RCr + L

Q∗(ω0) ' LR

RCr + L

√

C

L
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Figure 2.8: Typical step response of a LCR parallel circuit near the acoustic
band.

2.3.5 LCR Parallel Circuit Transient Response

Let’s briefly analyze the response to a step of the LCR parallel circuit for
the under-damped case.

If we define the following quantity

γ =
1

2Q
,

called damping coefficient, and if 0 < γ < 1, then we will have at the
circuit output

v(t) = v0
2γ

γ − 1
e−ω0γt cos

(

√

1 − γ2 ω0t + ϕ0

)

+ v1 .
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The voltage output v(t) is a damped sinusoid with angular frequency√
1 − γ2 ω0 and time constant τ = 1/ω0γ. The DC offset v1depends on the

inductor resistance r.
Figure 2.8, a typical step response of the LCR circuit shows a ring-down

with a DC offset.
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2.4 Laboratory Experiment

Real inductors have not negligible resistance. To build a LCR series circuit
with a highest quality factor it is indeed necessary to minimize the resis-
tance of the circuit by mounting in series the inductor and the capacitor
only. Typical effective resistance of the inductors used in the laboratory is
about 10Ω to 80Ω at resonance .

Because of the internal resistance of the function generator (the best
scenario gives ∼ 50Ω) is then comparable at some frequencies to LCR load,
we will expect that the approximation of ideal generator will be no longer
valid.

Moreover, harmonic distortion of the function generator will be quite
evident in the LCR series circuit because of the dependence of the load on
the frequency.

An estimation of a ring-down time constant τ can be obtained as fol-
lows. From the ring-down equation we have that after a time t = τ the en-
velope maximum amplitude is reduced by a factor 1/3 (e ' 1/2.718). This
means that we can easily estimate τ by just measuring the time needed to
reduce the amplitude down to about 1/3 of its initial value. A cruder way
is to count how many periods n∗ the amplitude takes to decrease to 1/3 of
its initial value. Then the estimation will be

τ ' Tn∗ =
n∗

ν0
,

where T , and ν are respectively the period and the frequency of the oscil-
lation. Considering that Q = πν0τ then

Q ' πn∗ .

2.4.1 Pre-laboratory Exercises

It is suggested to read the appendix about the electromagentic noise to
complete the pre-lab problems and the laboratory procedure.

1. Determine the capacitanceC of a LCR series circuit necessary to have
a resonant frequency νC = 20kHz if L = 10mH, and R = 10Ω. Then,
calculate Q, τ , ν0, (ω = 2πν) of the circuit.
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2. Find the LCR series input impedance Zi and plot its magnitude in a
logarithmic scale. Determine at what frequency is the minimum of
|Zi| .

3. Supposing that the internal resistance of the function generator is
Rs = 50Ω, and using the previous values for L, C, and R, calculate
the circuit input voltage attenuation at the frequency of |Zi| mini-
mum and at twice that frequency.

4. Determine the capacitance C of a tank circuit necessary to have a
resonant frequency νC = 20kHz if L = 10mH, R = 10kΩ, and r =
10Ω. Use the high frequency approximation. Then, calculate Q, τ , ν0,
of the circuit.

5. Estimate the time constant τ of the ring-down in figure 2.8. Suppos-
ing that R = 10kΩ, estimate r from figure 2.7.

6. Calculate the maximum frequency of the EM field isolated by a Fara-
day cage with a dimension d = 10mm.

2.4.2 Procedure

1. Build a LCR series circuit with a resonant frequency of around 20kHz,
using inductance, capacitance, and resistance values calculated in
the pre-lab problems. Then, do the following steps:

(a) Verify the circuit transfer function HC (ν) and in particular for
frequencies ν � νC and ν � νC

(b) Explain why the input voltage Vi changes in amplitude if we
change frequency.

(c) Considering the harmonic distortion of the function generator,
explain why the frequency spectrum of the input signal changes
quite drastically when we approach the resonance νC .

(d) Find the resonant frequency νC knowing the expected magni-
tude and phase values, and compare with the theoretical value.

(e) Estimate the quality factor Q of the circuit from the transfer
function measurements and compare it with the theoretical value.
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2. Build a LCR parallel circuit with a resonant frequency around 20kHz,
using inductance, capacitance, and resistance values calculated in
the pre-lab problems. Then, do the following steps:

(a) Verify the circuit transfer function H (ν), and in particular for
frequencies ν � ν0 and ν � ν0.

(b) Find the resonant frequency ν0 knowing the approximate ex-
pected magnitude and phase, and compare with the theoretical
values. Estimate the quality factor Q of the circuit and compare
it with the theoretical value.

(c) Estimate the quality factor Q of the circuit using the step re-
sponse.

3. Check the effect of the Faraday cage ( a metallic coffee can) using 10x
probe connected to the oscilloscope. Add a 1m long wire to increase
the antenna effect.
Note the differences when the antenna is approached to the fluores-
cent lights, and when you touch the antenna.
Keeping the cage in the same position, explain what you observe
and coarsely estimate the amplitude and frequency content of the
picked-up signal in the following conditions:

(a) Antenna outside the cage,

(b) Antenna inside the cage,

(c) Antenna inside the cage with ground probe connected to the
cage.
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Chapter 3

Diodes and Transistors

3.1 Introduction
In this chapter we will analyze two new electronic devices, the semicon-
ductor diode and the bipolar junction transistor (BJT). For a better under-
standing of their behavior and characteristics, we will also introduce some
basic applications.

Unfortunately, there will be no time to study the quite complex physics
of semiconductors, and especially the conduction mechanism, which sub-
stantially differs from that of metals. The interested student should look
for a course and books on solid state physics.

It is important to notice that to quickly grab how the BJT device works,
it is fundamental to acquire a clear understanding of the semiconductor
diode’s behavior.

3.2 The Semiconductor Junction (Diode)
The semiconductor junction or semiconductor diode is a device which shows
non-linear behavior due to its peculiar conduction mechanism.

In fact, if ID and VD are the current and the voltage difference across
the junction, we will have

ID(VD) = Is(e
−qVD
ηkBT − 1), (3.1)

where I0 is the reverse saturation current, kB = 1.3807·10−23J/K, the Boltz-
mann constant, T the absolute temperature , q = −1.60219 · 10−19C, the

55
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Figure 3.1: Diode characteristic (continuous curve), simplified diode character-
istic (dashed curve). Note the different scales in first and third quadrant of the
diode characteristic plot.

electron charge, and η a dimensionless parameter which depends on the
diode type. Considering that the ambient temperature is T ' 300K, we
will have kBT ' 4.14 · 10−21J ' 0.026eV. For silicon diodes the reverse
saturation current Is is of the order of few tenths of nano-amperes.

Instead of following Ohm’s law, the semiconductor junction follows an
exponential law (the diode I-V Characteristic). Deviations from this law
are negligible depending on the current magnitude and the diode charac-
teristics.

Figure 3.1 shows standard symbols for a semiconductor diode and the
I-V characteristic. The break-down voltage Vb reported in the same figure
is the reverse voltage which essentially short circuits the junction (typically
between -100V and -50V). This behavior is not accounted in equation (3.1),
and is generated by the so called avalanche multiplication mechanism and
the Zener mechanism1.

1The thermally generated carriers accelerated by the electric field have enough energy
to disrupt the electrons bond of the crystal atoms producing new carriers (electron-holes
pairs). The new and accelerated pairs generate new carriers producing an avalanche of
carriers, and indeed a break-down current.

A sufficient strong electric field can also disrupt electrons bonds creating an electron-
hole reverse current. This effect is called Zener Breakdown mechanism.
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Figure 3.2: diode standard symbols. Starting from left, diode symbol , Zener
diode symbol, and Schottky diode symbol. Diode terminals A, and K are respec-
tively called anode and cathode.

A simplified model of the junction diode is that of a perfect switch, i.e.

ID(V ) =

{

∞ V ≥ Von
0 V < Von

,

where Von is the diode turn-on voltage or cut-in voltage, which depends on
the junction type and on the current magnitude. For current up to ID ∼
100mA, silicon diodes have Von ' 0.6V, and germanium diodes have Von '
0.3V .

For voltages greater than Von, the diode is a short circuit (current is not
limited by the diode) and is said to be forward biased. For smaller values it
is an open circuit (current across the diode is zero ) and is reverse biased.

3.2.1 Zener Diodes
Zener diodes are particular semiconductor diodes with adequate power dis-
sipation to operate in the break-down voltage region. They have a well
defined Vb, with values ranging from about few volts to several hundreds
volts. Zener diode symbol is shown in figure 3.9. Approximating the char-
acteristics with a piecewise linear relationship, we have

ID(V ) =











−∞ V < Vb
0 0 ≤ V < Von

+∞ V ≥ Von

,

Often, the break-down curve is virtually vertical so that the previous
approximation of the reverse biased region is quite good.
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3.2.2 Schottky Diodes
A junction made of a semiconductor and a metal can behave like a semi-
conductor diode[2]. For example, Lightly doped silicon and aluminum
can form a semiconductor junction. Such kind of devices, called Schottky
barrier diodes (or simply Schottky diodes), still follow the diodes characteris-
tics (3.1) with usually a lower turn-on voltage Von and a larger in magni-
tude reverse saturation current Is. The symbol for Schottky diode device
is shown in figure 3.9.

3.3 Diode Dynamic Impedance
For linear devices the current is proportional to the applied voltage and
for a given frequency the impedance (V/I) is constant. With non-linear
circuits this is not true anymore, but we can generalize the impedance
concept introducing the dynamic impedance

Rd =
dV

dI

Let’s apply this definition to the diode. Starting from the I-V charac-
teristic equation and neglecting the reverse saturation current, after some
algebra we obtain

VD = η
kBT

q
ln
ID
I0

.

Taking the derivative on both sides we obtain

Rd = η
kBT

q

1

ID

As we can see, the dynamic impedance of the diode depends on the
current ID.

Considering a silicon diode with a typical value of η = 2, we will have

Rd(ID) ' 5.2 · 10−4

ID
Ω, ID = 1mA ⇒ Rd ' 0.52Ω .

For small variations of the current around 1mA, we can assume that
the impedance of a forward biased diode with η = 2 is ∼ 0.5Ω per mil-
liampere. The dynamic impedance concept will be quite useful for study-
ing the bipolar junction transistor.
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Figure 3.3: Half-wave rectifier circuit.

3.4 Practical Circuits

To better understand the behavior of a semiconductor junction, let’s ana-
lyze a few typical applications of semiconductor diodes. Some other appli-
cations in connection to other components will be studied in the following
chapters.

3.4.1 Rectifiers, AC to DC Conversion

The purpose of a rectifier circuit is to convert alternating current into a
unidirectional current. This can be achieved using semiconductor diodes.
The typical alternating current to direct current converter is a rectifier con-
nected to an active low pass filter with a so called regulator circuit, which
smoothes the rectifier output and minimizes ripples. The simplest regu-
lator is a capacitor placed in parallel with the rectifier output. Regulators
can be easily found in literature (see [1]).

3.4.1.1 Half-Wave Rectifier

The simplest rectifier circuit is the so called half-wave rectifier shown in
figure 3.3.

Using the diode ideal characteristic, it is quite straightforward to pre-
dict the voltage difference across the the resistor RL. In fact, when the
sinusoidal signal is positive, it will forward bias the diode and we will
have a voltage drop across the resistor VL = RI . For the negative half
cycle, because the diode is reverse biased VL must be zero.
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Figure 3.4: Voltage difference across the load connected to the half-wave rectifier
output.

Considering the diode threshold voltage V0, and the diode resistance
Rf during the positive half cycle we will have

VL =
RL

Rf +RL
(Vs − V0),

and if
RL � Rf ⇒ VL ' (Vs − V0).

During the negative half cycle we will have

VL =
RL

Rr +RL
Vs,

and if

RL � Rr ⇒ VL ' RL

Rr
Vs ' 0.

The main disadvantage of this circuit is the very poor efficiency (less
than 50% of current is rectified). In fact, instead of rectifying the entire
signal the circuit chops the negative half cycle out (see figure 3.4).
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Figure 3.5: Full-wave rectifier bridge circuit or simply bridge rectifier.

3.4.1.2 Full-Wave Rectifier Bridge

The Full-Wave rectifier bridge (see figure 3.5), a more efficient way of rec-
tifying an AC current, uses four arranged diodes in the so called bridge
configuration. To understand the circuit “logic”, let’s consider the two
possible states of the nodes A and B shown in figure 3.5.

• When the node A is positive (B negative) the diodes D2, and D3 are
forward biased (i.e. the diodes are a “short circuit”) and D1, and
D4are reverse biased (i.e. the diodes are an “open circuit”). The cur-
rent flows through the resistor RL and the node C is positive.

• When the node A is negative (B positive), the diodes D1, and D4 are
forward biased (short circuit) andD2, andD3 are reverse biased. The
current flows through the resistor RL and the node C is still positive.

Using the full-wave rectifier we will indeed have the negative half cycle
rectified as shown in figure3.6.

3.4.2 Voltage Limiter (Diode Clamp)
Diodes can be used to limit the voltage applied to an input as shown in
figure 3.7. Let’s consider the diode D1connected to Vmax. If Vi exceeds
Vmax + Von the diode is not reverse biased anymore and starts conducting,
i.e the circuit limits the input voltage Vi to Vmax + Von . Analogously, D2

limits the minimum input voltage Vi to Vmin +Vo. The resistor is necessary
to limit the current flowing through the diodes. In fact, without the resistor
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Figure 3.6: Voltage difference across the load connected to the full-wave rectifier
output

if we exceed one of the voltage limits an excessive current can destroy the
forward biased diode junction. The worst scenario is when the broken
diode becomes an open circuit and then the device to protect becomes
completely unprotected.

3.5 The Bipolar Junction Transistor (BJT)

The bipolar junction transistor is essentially a device formed by two semi-
conductor junctions which share one semiconductor layer (see figure 3.8).

The common layer is called the base and the two others are the collector
and emitter. We will have then the emitter-base and the collector-base junc-
tions.

There are two types of BJT: the npn and the pnp transistor. In the pnp
transistor the collector and the emitter are p-type and the base is n-type.
The npn transistor has a p-type base , and n-type collector and emitter.
Standard symbols for both types are shown in figure 3.9.

Because the two junctions have two possible states (forward or reverse
biased), the BJT can have four possible operating modes as shown in the
following table
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Figure 3.7: Diode clamps circuit.
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Figure 3.8: Qualitative physical model of a npn junction.

Operating Bias Bias
Mode Emitter-Base Collector-Base

Forward-Active Forward Reverse
Cutoff Reverse Reverse

Saturation Forward Forward
Reverse-Active Reverse Forward

Forward-Active:

The BJT approximates a current-controlled source of current as explained
in section 3.5.2.
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Figure 3.9: Standard circuit symbols for npn and pnp transistors.

Cutoff:

Both junctions are reverse biased. Neglecting the reverse saturation cur-
rent, no current flows through the junctions. This mode, together with the
saturation mode, is used to implement the switch device (see section3.5.5).

Saturation:

Both junctions are forward biased, and the current IC flows from the col-
lector through the emitter.

Reverse-Active:

The BJT still approximates a current-controlled source of current, but the
amplification factor is usually less than that of the forward-active mode.

3.5.1 The Collector Emitter Characteristic

Figure 3.10 shows collector emitter characteristic curves family of a typical
npn transistor. Each curve corresponds to a given value of the base current
IB, with the base emitter junction forward biased.

The curves have three regions which are called, the saturation, forward-
active, and breakdown regions. The break-down region starts for VCE values
larger than those shown in the plots .
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Figure 3.10: Collector Emitter voltage characteristics for the 2N2222 npn transis-
tor. The value above each curve is the corresponding base current IB .

Saturation Region

The saturation region is where the collector emitter voltage difference VCE
slightly changes as a function of the collector current IC . For the 2N2222
this regions is where VCE is between 0V to about 0.3V.

Forward-Active Region

The collector current IC slightly changes as a function of the collector emit-
ter voltage VCE. Normally, this region is quite larger than the saturation
region. For the 2N2222 it is where VCE is between 0.3V to about 50V.

Break-Down Region

This is the region where the VCE doesn’t change and IC rapidly increases.
In this case, the conduction in the junction is produced by the avalanche
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Figure 3.11: Ideal current controlled source (diamond symbol), i.e. the current
output io is proportional to the current input ii, and is independent of the load R.
In other words, if we change the load R and vo consequently, io stays constant.

mechanism. For the 2N2222 this region starts from VCE > 60V.

3.5.2 The BJT as a Current-Controlled Current Source (CCCS)

As stated before, the bipolar junction transistor is a device that approx-
imates a current-controlled source of current CCCS (see figure 3.11). In
other words, because its current output io is proportional to the current
input ii we can linearly control io by changing ii, i.e.

io(t) = βF ii(t).

if |βF | > 1 then the BJT is a current amplifier.
As shown in figure 3.11, once ii is set io must be constant indepen-

dently of the load R placed at the output. If the voltage across the output
vochanges we don’t expect to see any changes on io. The curve height sim-
ply depends on the current input ii.

This approximation is valid for the so called small signal model and
the low frequency model. Non linearities arise for large signals and at
high frequency the response cannot be flat.

It is clear from the VCE characteristic that, if we want to use the BJT as
CCCS , we have to bias it with a DC voltage to work in the forward-active
region.
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Figure 3.12: Simplified DC model for the bipolar junction transistor working in
forward-active mode. The two drawings are just two different arrangement of
the same circuit.

3.5.3 BJT Simplified DC Model

The simplified DC model of the BJT for the forward-active mode is shown
in figure 3.12 with two different arrangements. The first mimics the topol-
ogy of the BJT symbol, and the second the topology of the CCCS in figure
3.11. This model is good enough to properly bias the transistor to work as
an amplifier.

The current controlled current source represents the VCE characteristic
in the forward-active region. The battery in the base emitter circuit repre-
sents the voltage across the base-emitter forward biased junction (it could
be replaced with a diode). A typical value is VBE = 0.7V.

3.5.4 The BJT as an Amplifier

Left circuit of figure 3.13 shows the basic configuration of a BJT as a sim-
ple current amplifier. Resistors RB and RC are chosen to properly bias and
limit the currents across the junctions. The capacitance at the input is nec-
essary to prevent the DC bias from reaching the device connected to the
amplifier input. Let’s better analyze how to properly bias the transistor
junctions.
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Figure 3.13: The BJT as an AC basic amplifier (left ), and same circuit using the
forward-active DC model (right).

3.5.4.1 BJT Amplifier Bias

To obtain the largest voltage dynamic range, and considering the VCE char-
acteristic, and neglecting the saturation region, we must have

VCC ' 2VCE . (3.2)

Plugging this forward-active DC model into the amplifier circuit as
shown in figure 3.13, we will have2

VCC = VCE +RCIC ,

Considering equation3.2 and the previous equation the collector resistor
value will be

RC =
VCC − VCE

IC
=

VCE
βF IB

.

For the base resistor we will have

VCC = VBE +RBIB,

2The repeated index is a common convention used to distinguish between the voltage
of the transistor’s connections and the source voltages applied to the transistor connec-
tions. In this case between the collector voltage VC and the source voltage VCC .
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and finally

RB =
2VCE − VBE

IB
.

This circuit is not very useful because the junctions bias and the gain
depend on βF , which is quite often not well know and can easily vary
by a factor of two for the same transistor. Moreover, βF is quite sensitive to
temperature fluctuations. Anyway, this circuit is pedagogically interesting
because of it simplicity.

Numerical Example

A typical BJT a transistor has VCE between 1V and 10V. Considering the
following parameters



















βF = 100
VCE = 5V
VBE = 0.7V
IB = 80µA

⇒











RC ' 625Ω
RB ' 116.25kΩ
VCC ' 10V

.

3.5.4.2 BJT Amplifier Gain, Input and Output Impedance (Low Fre-
quency Model)

VCC

+

−

IC

+

−
VCCVi Vo

IB

I Bhfehie

CB

R R
B C

E

Figure 3.14: BJT basic amplifier using the low frequency model (gray box). The
parameters hfe = βF and hie are provided by the manufacturer

Because the emitter-base junction is forward biased the input impedance
seen from the points B and E is quite low. This consideration with the fact
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that the BJT approximates a CCCS is sufficient enough to define a model
for the BJT transistor response for the low frequency region. Figure 3.14
shows the model applied to the basic amplifier. The resistance hie is indeed
the dynamic input impedance of the forward biased emitter-base junction.

From figure 3.14 we can easily calculate the amplifier voltage gain,
which is

|Av| =
RCIC
hfeIB

= hfe
RC

hie
(βF = hfe)

Considering that the ideal current source is an open circuit and the
ideal voltage source is a short circuit, we will have

Ri ' RB|| hie, Ro ' RC .

Thermal fluctuations can substantially change the response of the BJT. A
way to avoid such kind of behavior is to add a feedback network. Es-
sentially, a feedback network samples the output and sends it back to the
input with negative sign minimizing the output fluctuations. For example,
if the amplifier gain increases because of a temperature increase, the feed-
back signal will increase as well reducing the input signal by the amount
necessary to keep the gain constant. Feedback networks can create insta-
bilities due phase delays in the loop (the feedback signal can change sign).
It is indeed necessary to satisfy stability criterion to avoid oscillations. A
detailed explanation of feedback theory can be found in [2] and [3].

3.5.5 BJT as Switch
Figure 3.15 shows a npn BJT configured as a switch. In this case, the func-
tion of the two resistors RB and RC are just to limit the current flowing
through the transistor junctions.

The input voltage vi control the output state of the switch. For sake
of simplicity let’s neglect the reverse currents components to study the
circuit.

• If vi = 0, The emitter-base junction is reverse biased and no current
flows through the circuit. This implies that vo ' VCC and (BJT in
cutoff state).

• If vi = V and supposing that this voltage forward bias both junctions
we will have vo ' 0 (BJT in saturation).
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CC
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−

Figure 3.15: BJT as a switch

Let’s consider now the BJT reverse currents.

• If vs = 0, we will have iC = ICO and vo = VCC − ICORC . Because
ICO ∼ 1nA ICORC is negligible and v0 = VCC .

• If vi = V , then v0 is essentially the voltage drop VBEof the forward
biased base-emitter junction vo = 0.7V.

3.5.6 BJT as Diode

Q 

Figure 3.16: BJT as diode.

Figure 3.16 shows the typical configuration used to make a BJT work-
ing as simple diode. The emitter-base junction acts as a simple semicon-
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ductor diode. Short circuiting the collector-base ensures that the collector-
base junction is always reverse biased.

3.5.7 Current Mirror

VCC

Q 1

IR

IB1 IB2

Q 2

C2I

VCC

Q 1

R

IC1IC IB

IR R

Figure 3.17: BJT as diode.

Let’s consider the left circuit shown in figure 3.17 where VCCforward
bias the emitter-base junction. From the KVL obtain

IR =
VCC − VBE

R
.

If VCC andR are kept constant (VBE = 0.7, typically ) then IR is constant
as well. Applying the KCL to node we obtain

IR = IC + IB

and considering that
Ic = βIB

we will finally have

IR =

(

1 +
1

β

)

IC . ⇒ IC ' IR.

The collector current IC is indeed constant if VCCand R are kept con-
stant.
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Let’s now consider the circuit on the right-hand side of figure 3.17. Be-
cause of the KVL we will have

VBE1 = VBE2

Supposing that the two transistors Q1 and Q2 are perfectly identical
and because they have the same VBEwe must have

IC1 = IC2.

We will have indeed that the output IC2 will work as a constant current
source.

Let’s analyze the stability of the circuit for a change on the transistor
parameter β. From the KVL and KCL we have

IR =
VCC − VBE

R
IR = IC + 2IB

After some simple algebra and considering that IC = βIBwe will have

IC =
β

β + 1

VCC − VBE
R

Studying the fluctuation of the transistor we will have

∆IC
IC

' 2
∆β

β2
.

In other words, the stability of this current source due to the fluctua-
tions of the transistor properties are expected to be remarkably good. In
fact, if we suppose to have β = 100 and change of 100% in β then

{

β = 100
∆β = 100

⇒ ∆IC
IC

' 0.02

For their simplicity, current mirror are extensively used in ICs design
where a constant current source is needed.
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3.6 Pre-Laboratory Problems

1. Considering the following figure, state which cases have the diode
conducting

D1

+3V

+5V

D2

−3V

−5V

D3

−1V

2. Calculate the resistanceR needed to limit the current flowing through
a diode to 10mA with a voltage source of Vs = 5V.

3. Adding a Capacitor C in parallel to the the half-wave rectifier load
RL we low-pass filter the rectifier. If the load RL = 1kΩ, what must
be the value of the capacitor C (within 10%) so the voltage output
doesn’t drop more than 90% ( 10% of ripples) at 1kHz?

D

ID

VL

dVVL

Vs

−

+

−

C RL

V

t

(Hint: consider that the capacitor is just discharging through the load
RL).

4. Estimate the β of the npn transistor 2N2222 in figure 3.10.

5. Supposing that we want a maximum current of 1mA going through
the base, and the maximum applied input voltage is 5V, determine
the value of RBfor the BJT switch circuit.
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1kΩ
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ECBA D

XW YZ

JHF IG

LED

GND

−15V

+15V

Figure 3.18: Electronic circuit breadboard contacts topology and suggested
connections. Power supplies voltage distribution and LED connections
are highlighted with gray boxes. Whenever possible black jacket wires
should be used to connect components to ground (GND) , red jacket wires
for +15V and white jacket wires for −15V . This pragmatism helps to un-
derstand and debug the circuit.



76 CHAPTER 3. DIODES AND TRANSISTORS

3.7 Procedure

Remember to consult the components data-sheets to properly connect diodes
and transistors leads.

It is good practice to check the power supply connections before turn-
ing generators or sources on.

Use a LED (light emitting diode) to indicate the status of power sup-
plies. Connect the LED to the 15V power supply, and limit the current to
about 10-20mA.

It is recommended to cable power supplies and LED as shown in figure
3.18. The figure also shows how the contacts are electrically connected
inside the breadboard.

To simplify circuits understanding and debugging, use black jacket
wires to connect components to ground, red jacket wires for +15V and
white jacket wires for −15V .

1. Using the half-wave rectifier circuit and the oscilloscope in theX−Y
mode, plot the volt-ampere characteristic of a silicon, and a germa-
nium diode. Use channel 1 to measure the voltage drop across the
diode the ADD and channel 2 INVERTING features to obtain the
voltage across the resistor.
Verify the exponential response of the diodes and determine their
turn on voltage Von. Supposing that the sinusoidal signal amplitude
is 5V, choose R to limit the current to a maximum of 10mA.

2. With a 1kHz sinusoidal signal verify the response of the previously
built half-wave rectifier comparing the rectifier output with the volt-
age source signal. Then connect a capacitor in the proper way to
obtain ripples of about 10% of the maximum output voltage.

3. Build a BJT switch working with the TTL logic levels ON ⇒∼ 5V
and OFF ⇒∼ 0V.
Check the status of the two junctions measuring the voltage drop
across them for the cut-off and the saturation mode.
Connecting two silicon diodes to the BJT switch input in a proper
way implement a NOR GATE, i.e. a circuit with two inputs A and B
and one output C which fulfills the following true table:
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A B A ORB C = AORB

OFF OFF OFF ON
OFF ON ON OFF
ON OFF ON OFF
ON ON ON OFF

Hint: one lead of each diode should be connected to the switch input.
Explain why the diodes are needed.

4. Build the Simple BJT amplifier explained in section 3.5.4 using a
2N2222 transistor, and do the following steps

(a) Check the DC bias VCE and VBE of the two BJT junctions .

(b) Measure the transfer function, and find the two cutoff frequen-
cies where the amplitude is -3dB down from the plateau.

5. Optional: Build the following common emitter amplifier circuit ( the
circuit is explained in the appendix)

RC

vi

RB

RB27kΩ RE1kΩ

5.1kΩ150kΩ

vo
C

1

2

VCC

2N2222

C

=15V

and do the following steps

(a) Check the DC bias VCE and VBE of the two junctions .

(b) Measure the transfer function, and find the two cutoff frequen-
cies where the amplitude is -3dB down from the plateau.
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(c) Verify that the transfer function plateau has a gain |G| ' RC/RE.
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Chapter 4

The Operational Amplifier

4.1 Introduction
Operational amplifiers are one of the most extensively used analog inte-
grated circuits especially because of their ability to approximate reason-
ably well the ideal behavior. For this reason real operational amplifiers
can be quite often modeled as ideal. This simplicity of usage and mostly
the versatility this device, which hides a large internal complexity 1, make
the operational amplifier suitable for many different applications.

The ideal operational amplifier concept introduced in the first section,
will look after a first reading quite awkward. Anyway, everything will be
clearer when it is analyzed in conjunction with the called feedback net-
work which links the output of the amplifier inputs.

Subsequent sections are mainly dedicated to the explanation of some
basic circuits. Finally, section 4.4 introduces more realistic model of oper-
ational amplifier together with some of the peculiar behavior of this elec-
tronic device.

4.2 The Ideal Operational Amplifier
The ideal operational amplifier (Op-Amp) is a linear amplifier with two
differential inputs v+, v− and one output vo (see figure 4.1) and with the

1A modern operational amplifier made of a cascade of stages, each one designed
mainly to match the ideal characteristics, can have around 50 components both active
and passive. See the Analog Devices Web site, for example.
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following characteristics:

• v0 = Av(v+ − v−), Av > 0, (linearity)

• input resistance Ri → ∞,

• output resistance Ro → 0,

• voltage gain Av → ∞,

• frequency response constant for any frequency.

Aside the welcome property of linearity and infinite frequency response,
the need of all the other characteristics can be justified as follows. Infi-
nite input resistance Ri means essentially that the Op-Amp inputs do not
produce perturbations to any circuit to which they are connected to. Zero
output resistanceRo perfectly isolates the Op-Amp from any perturbation.
Infinite input impedance and zero output impedance implies also no dis-
sipation of energy. The condition of infinite voltage gain Av is necessary if
we want a device able to deliver any gain, once a network which connects
the output to the input is added to the Op-Amp. In general, this kind of
network is called feedback network.

vo Av= − viAv

−

+

>0
v−

v+

vi − v−v+=

Figure 4.1: Op-Amp symbol.

4.2.1 Fundamental Equation for the Ideal Op-Amp (the Golden
Rule)

The consequence of the following conditions

• Av → ∞,

• vo <∞ if vi = v+ − v− <∞,
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implies
v+ − v− = 0, (at all times) (4.1)

Equation 4.1 will be called the Op-Amp golden rule and is fundamen-
tal for the solution of any circuit involving Op-Amps. We will see in the
next sections the importance of this equation once a feedback network is
connected to the Op-Amp.

4.2.2 Op-Amp Input Output “Logic”

It is worthwhile here to notice the behavior of Op-Amp output as function
of the two inputs. From the definition of Op-Amp we have that a signal
sent to the negative input V− is amplified and changed in sign. A signal
sent to the positive input V+ is just amplified. Two signals sent each to one
input are indeed subtracted and amplified.

+

−

Vo

Vs

−

+

R

R f

I

I

A

Figure 4.2: Op-Amp with a feedback network.

4.2.3 Op-Amp with a Feedback Network

Let’s consider the circuit in figure 4.2, where a feedback resistance Rf is
connected to the negative input. The current through the resistors R and
Rf is the same because the ideal Op-Amp input does not drive any current
(Ri = ∞). Furthermore, since Vi = V+ − V− = 0 and with the use Ohm’s
law and the KVL, it follows that

I =
Vi
R

= − Vo
Rf

. (4.2)
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The output voltage Vo and voltage gain A will be

Vo = AVi, A = −Rf

R
.

The gain of the Op-Amp depends just on the resistances ratio Rf and
R.

4.2.4 The Virtual Ground

Let’s re-analyze the circuit in figure 4.2. Because of the golden rule Vi =
V+ − V− = 0, and the negative input is grounded, the node A must always
be at zero voltage. This is equivalent to having A virtually grounded. The
adjective virtual is necessary, otherwise we could not have Ri = ∞ . In
other words, the virtual ground happens to be because the Op-Amp does
its best to keep Vi = 0.

4.3 Commonly Used Op-Amp Circuits
In the study of the several common Op-Amp configurations, we will use
the approximation of an ideal circuit. A more realistic model is often nec-
essary to understand some behaviors of real circuits. For an initial design,
and where the the ideal Op-Amp characteristics are well approximated,
the ideal model is quite often sufficient.

Rf

R

Vo

−

+

Vs

+

−

Figure 4.3: Non-inverting configurations of the Op-Amp.
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4.3.1 Non-Inverting Amplifier

Let’s consider the non-inverting configuration of the Op-Amp in figure
4.3. Because of Vi = 0, we will have

Vs − V− = Vs − RI = 0.

Considering that the output voltage Vo is

Vo = (Rf +R)I,

we can use the expression of I to obtain

Vs =
R

R +Rf
Vo.

The output voltage Vo and voltage gain A will be

Vo = AVi, A = 1 +
Rf

R
.

Considering that in this configuration Vs is directly connected to V+and
V− is not a virtual ground, the input impedance of the amplifier is Ri +R,
where Ri is the real input impedance of the Op-Amp.

4.3.2 Inverting Amplifier

This circuit has been already discussed in section 4.2.3. For completeness,
the solution and some comments are here reported

Vo = AVi, A = −Rf

R
.

It is worthwhile to notice that because V− = 0, the circuit input impedance
is just R. Having values of R typically of few kΩ, the inverting configura-
tion doesn’t preserve the high impedance characteristic of an Op-Amp. A
connection of the circuit input to a network can potentially create appre-
ciable perturbations.
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Vo

R

−

+

I1I1 R

V2

V1

2

R f

R0

1

Figure 4.4: Differential input configuration of the Op-Amp.

4.3.3 Differential Input Stage
Let’s now solve the differential input circuit of the Op-Amp in figure 4.4.

Writing the voltage drop across R1and Rf , we obtain the linear system

V− − V1 = R1I,

Vo − V+ = RfI.

Solving the system with respect to Vo, we get

Vo =
(

1 +
Rf

R1

)

V− − Rf

R1

V1.

Using the voltage divider equation to obtain V+and because V+ −V− =
0, we have

V− = V+ =
R0

R2 +R0

V2,

and finally, we get

Vo =
R1 +Rf

R1

R0

R2 +R0
V2 −

Rf

R1
V1.

A way to to obtain the same voltage gain for V2 and V1 is to impose
R0 = Rf and R1 = R2 = R. The output voltage becomes

Vo = A(V2 − V1), A =
Rf

R
.



4.3. COMMONLY USED OP-AMP CIRCUITS 87

Vo

Vs

−

+

Figure 4.5: Voltage follower or unity gain buffer.

This differential configuration is not very convenient because it does
not preserve the high input impedance of the Op-Amp. In fact , consid-
ering that the Op-Amp input impedance is very high, we have that the
resistance seen from V1 is R2 +R0. Usually, the sum of those resistors is at
least one order of magnitude smaller than the Op-Amp input impedance.

Moreover, if we need to build a variable gain differential amplifier, we
will need to change more than one resistor value. Matching the resistances
values can become an issue when thermal drifts become important. More
practical and stable configurations called Instrumentation amplifiers are
available “off the shelf”.

4.3.4 Voltage Follower (Unity Gain “Buffer”)

The circuit sketched in figure 4.5 is called voltage follower or unity gain
buffer. The feedback line with no load gives

Vo = V+.

Moreover, because of the condition Vi = 0 we will have

V− = V+,

which implies
Vo = Vi.

The output follows the input voltage with unitary gain.
Considering that the high impedance input and the low impedance

output values of Op-Amps are close to the state of the art in the electronic
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design2, the voltage follower can be used as an isolation stage (buffer) be-
tween two circuits.

4.3.5 Integrator Amplifier

+

−

R

Vo

Vs

−

+

Cf

R f

Figure 4.6: Active integration stage using an Op-Amp.

Let’s consider the circuit in figure 4.6 without the resistance Rf . The
voltage drop vo across the capacitor Cf is

vo(t) = − 1

Cf

∫ t

−∞

i(τ)dτ (4.3)

and the current flowing through the resistance R is

i(t) =
vi(t)

R
.

Placing the expression of i(t) obtained from the previous equation into
eq.(4.3), we will obtain

2Devices expressly made to work as input unity gain buffer, and output unity gain
buffer are also available. Analog Devices SSM2141 and SSM2142 are complementary
buffers devices which can drive long delay lines for example.
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vo(t) = −1

τ

∫ t

−∞

vin(t
′)dt′, τ = RCf .

Real Op-Amps or signals connected to the input have often (always )
a DC offset. This offset is indeed integrated and after a given time will
saturate the amplifier output. This saturation is essentially a manifesta-
tion of the instability of the circuit at low frequency. Moreover, the initial
charge of the capacitor is undefined, making the initial output state unpre-
dictable.

A common way to avoid these problems is to introduce the resistance
Rf in parallel with the capacitor Cf which reduces the amplifier DC gain.
An intuitive way to understand the effect of this feedback resistance is
that it does not allow the capacitor to be charged ad libitum. The choice
of the Rf is not so trivial if we want to preserve the characteristic of good
integrator. Using the simple phasor analysis it easy to proof that the good
integrator condition is ω � 1/CfRf .

If the DC current must be integrated, we can place a switch in parallel
with the capacitor to be opened when the integration is started. In this
way we will have the capacitor state completely defined.

4.3.6 Differentiator Amplifier

Let’s now consider the circuit in figure 4.7 without the feedback capacitor
Cf . Applying a similar analysis to that used in the integrator amplifier we
will have

i(t) = C
dvi
dt
,

vo(t) = Rf i.

and indeed
vo(t) = τ

dvi
dt
, τ = RfC.

This configuration without Cf doesn’t work well with real Op-Amps,
because of stability problems. In fact, the introduction of the capacitor
compromises the internal compensation of the Op-Amp. Placing a ca-
pacitor Cf in the feedback network restores the compensation making the
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Vo

R f

−

+
+

−

Vs

Cf

C
I

I

Figure 4.7: Differentiator stage using an Op-Amp.

overall circuit stable. The choice of Cf is not trivial if we want to preserve
the circuit differentiator characteristics.

Section 4.4.3 explains in more details the effect of this configuration on
the compensation of a real Op-Amp.

4.4 The Real Op-Amp

Lets consider in this section a more realistic model of the Op-Amp by in-
cluding a finite input impedance Ri, non zero output impedance Ro, finite
gain A, bias currents and voltage offsets. Using ideal components, the
equivalent circuit of the real Op-Amp is shown in figure 4.8.

4.4.1 Bias Currents and Voltage and Current Offsets

Imbalances inside of the Op-Amp, mainly due to differences in the elec-
tronics components, produce undesirable bias currents and a voltage off-
set at the inputs. Input voltage and current offsets can be modeled by
introducing ideal generators as shown in figure 4.8. Current Offset is de-
fined as the difference in the magnitude of the bias currents, i.e.

ios = |ib+| − |ib−|
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A way to characterize the voltage offset is to use the voltage follower
configuration (see section 4.3.4) with the input Vi connected to the ground.
The voltage offset will be directly the output voltage Vo.

Current input biases can be studied connecting a resistor between the
one input and ground and measuring the voltage drop across the resistor.

v−

vi

v+

bv
ib−

vo

ib−

−

+

R i
Ro

+

−

 A vv v

Figure 4.8: Equivalent circuit for an Op-Amp using ideal components. Voltage
offsets and current biases are taken into account using ideal voltage and current
generators.

4.4.2 Feedback Amplifiers
Let’s consider an amplifier with a negative feedback network as show in
figure 6.1. Considering that the summation point output is

Vi − β(ω)Vo,

FeedbackAmp.eps not found!

Figure 4.9: Amplifier with negative feedback
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and the amplifier gain is A(ω), the output voltage must be

Vo = A(Vi − βVo),

Collecting Vo we will have

Vo =
A

1 + βA
Vi ,

and the amplifier response ACL ( the so called closed loop transfer func-
tion ) will finally be

ACL(ω) =
A

1 + βA
.

We can clearly see that if the denominator goes to zero for a given fre-
quency ω∗ we are in trouble, ACL(ω

∗) diverges, and the amplifier saturates.
The trick to avoid this situation, is to study the following equation

AOL(ω) = −1, AOL = β A .

where AOL is the feedback amplifier open loop transfer function. If the phase
where the magnitude of AOL is equal to one is different from 1800plus
multiples of 3600 the denominator never goes to zero and the saturation is
avoided. However, this is not enough because we can have just an oscil-
lation with no saturation if the AOL phase is too close to 1800. The rule of
thumb is to have a so called phase margin of about 600 from −1800. Finally,
we can formulate a criterion for the stability:

where |AOL| = 1 ⇒ 120 > arg(AOL) > −120

Another important result of the theory of feedback amplifier is the fol-
lowing straightforward result

if βA� 1 ⇒ ACL(ω) ' 1

β

Where the open loop transfer function Aβ is greater than one the feedback
amplifier response does not depend on the response A(ω) of the amplifier
with no feedback.

It is worthwhile to notice that the ideal amplifier has A → ∞ and the
feedback amplifier response becomes ACL = 1/β for all angular frequen-
cies. Therefore, the ideal amplifier does not have undesired instabilities,
but just those ones that can be introduced by the feedback network.
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4.4.2.1 Non-Inverting Configuration

Vo

−

+

V−

V i

Z f

Z

Figure 4.10: Non-inverting configuration Op-Amp with generic impedance.

Considering the Op-Amp Non-Inverting configuration as shown in fig-
ure 4.10, and the voltage divider equation we have

V− =
Z

Zf + Z
Vo , (4.4)

and the feedback network transfer function is

β(ω) =
V−
V0

=
Z

Zf + Z
.

The approximate gain of the feedback amplifier is as expected

ACL ' 1

β
= 1 +

Zf
Z
.

4.4.2.2 Inverting Configuration

In this case the feedback network transfer function β is

β =
Vi
V0

.

Considering the inverting configuration stage as shown in figure 4.11,
and because of the virtual ground we have

{

Vi = ZI
−Vo = ZfI

⇒ β(ω) = − Z

Zf
,

The gain of the feedback amplifier is simply

ACL ' 1

β
= −Zf

Z
.
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Vo
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+

V i

V−

Z f

Z

Figure 4.11: Inverting configuration Op-Amp with generic impedance.

4.4.3 Compensated Op-Amp Transfer Function

Practical Op-Amps are often designed to have a frequency response dom-
inated by a single pole, i.e. the transfer function with no feedback is just a
simple low-pass filter. In this case, the Op-Amp transfer function with no
feedback can be written as

A(ω) =
A0

1 + j ω
ω0

, (4.5)

where A0 is the DC gain and ω0 is the angular frequency of the dominant
pole (the cut-off angular frequency of the low pass filter). This behavior
is obtained by introducing a compensating circuit (quite often a capacitor)
in the architecture of the Op-Amp.

Typical values for pole frequencies are between 5Hz and 100Hz. Figure
4.12 shows the differential transfer function of the Op-Amp AD711 with
no feedback network.

The reason of this choice comes from the stability requirement that we
mentioned in the previous section. In fact, an amplifier with a dominant
pole transfer function with dominant pole cannot lose more than 900 mak-
ing quite easy the design of a feedback network. To better understand,
let´s study more in details the compensated Op-Amp response with a feed-
back.
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Figure 4.12: Differential gain of the AD711 Op-Amp (cut-off frequency ν0 =

18Hz, unity gain frequency ν1 = 4MHz, and DC gain a0 = 110dB).

4.4.3.1 Compensated Op-Amp Frequency Response with Feedback

Considering the frequency response of a feedback amplifier for the com-
pensated case we will have

A(ω) =

(

A0

1 + j ω
ω0

)/(

1 +
β(ω)A0

1 + j ω
ω0

)

=
A0

1 + β(ω)A+ j ω
ω0

=

(

A0

1 + A0β(ω)

)/(

1 + j
ω

ω0(1 + β(ω)A0)

)

In the particular case that β is constant and β = β0 ≥ 1, the previous
equation becomes

A(ω) =
A1

1 + j ω
ω1

,

{

A1 = A0

1+A0β0

ω1 = ω0(1 + β0A0)
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In other words, the feedback Op-Amp response is the same as of the
open loop transfer function AOLbut with a smaller DC gain (about 1/β0)
and higher cut off angular frequency ω1 ' ω0β0A0.

4.4.4 The Common Mode Rejection Ratio (CMRR)

We want characterize the rejection of an Op-Amp output as a differential
amplifier, of signals sent to both inputs. For an ideal Op-Amp we expect
to obtain Vo = 0 for all frequencies, i.e. a perfect rejection. To define a con-
venient parameter which measures the rejection it is necessary to define
the following ones, the common mode gain

AC(ω) =
Vo

V+ − V−
, V+ = V− = Vs sin(ωt),

and the differential mode gain

AD(ω) =
Vo

V+ − V−
, V+ = Vs sin(ωt), V− = 0.

The Common Mode Rejection Ratio (CMRR) is defined as the modulus
of the ratio of the differential gain AD over the common mode gain AC , i.e.

CMRR(ω) =

∣

∣

∣

∣

∣

AD(ω)

AC(ω)

∣

∣

∣

∣

∣

Ideally, the CMRR should be infinity for all frequencies.
This parameter can be measured using the Op-Amp differential con-

figuration (see figure 4.4) and measuring AC and AD as a function of the
frequency. To minimize possible large systematic errors, it is necessary to
have the same gain for the to inputs V1 and V2. This can be achieved by
placing a trimmer in the voltage divider mesh of the differential config-
uration circuit. Adjusting the trimmer we can minimize Vo for a single
frequency and study the CMRR for a given bandwidth.

Figure 4.13shows the CMRR as a function of frequency of a typical
Op-Amp. A typical value for CMRR is 90dB.
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Figure 4.13: CMRR as a function of frequency of a typical Op-Amp.

4.4.5 The Gain Bandwidth Product (GBWP)
The gain bandwidth product is a common way to characterize the gain
with respect to the avaliable bandwidth of amplification. It is defined as

GBWP = A0ω0.

The larger the GBWP the better is the Op-Amp, and the closer the Op-
Amp is to the ideal operational amplifier.

4.4.6 The Slew Rate (SR)
The slew rate is defined as the maximum rate of the output voltage vo per
unit time

SR = max

{

∆vo(vi)

∆t

}

.

This parameter essentially measures the ability of an Op-Amp to follow
voltage changes for large voltage inputs.

The slew rate can be easily observed sending a square wave (see figure
4.14) to the Op-Amp input vi, and looking at the raising and falling slope
of the output signal vo. If the slopes do not change changing the input
amplitude, then the Op-Amp is slew rate limited.
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Figure 4.14: Slew rate illustration. Voltage Response vo of the Op-Amp to a large
step input voltage vi.

A similar procedure can be applied using a low frequency sinusoidal
signal as input. In this case if we increase to much the input amplitude,
the output will become distorted.

The slew rate is a non-linear effect intrinsic of the architecture of the
Op-Amp. In a compensated Op-Amp it is often proportional to the capac-
itance of the compensating network of the gain stage. Typical slew rate
values are of the order of few V/µs.

4.4.7 Ideal versus Real and Practical Considerations

The following table summarizes the main characteristic of an ideal Op-
Amp together with those of typical real Op-Amp. In some cases we can
found Op-Amps excelling some of the mentioned characteristics, and of-
ten being detrimental to others.
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Property Ideal Op-Amp Typical Op-Amp

Open-Loop DC Gain Av ∞ > 104

Open-Loop Bandwidth ∞ ∼ 10Hz (dominant pole)

Common Mode Rejection
Ratio CMRR ∞ > 70dB

Input Resistance Ri ∞ > 10MΩ

Output Resistance Ro 0 < 500Ω

Input Current δI± 0 < 0.5µA

Input Offset Voltage δV± 0 < 10mV

Input Offset Current δIi 0 < 200pA

What are the conditions that dictate the range of the feedback impedances
Rf? Apart from special cases, the feedback current I should be only a
small fraction of the maximum output current Io, i.e. I = 1%Io. A typical
Op-Amp has a maximum output of 10mA at 10V, i.e.

Rf =
V

I
=

10V
10 · 0.1%mA

= 100kΩ

Typical feedback resistors should be in the range of Rf = 50 − 1MΩ.
Small difference on the differential stage of the Op-Amp produces a

DC offset δV at the input, which can produce large DC output if the gain
is extremely high. For example, if we have

δV = 10mV, G ≥ 104,⇒ Vo ≥ 10V.
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4.5 Problems Preparatory to the Laboratory
1. Supposing that the open-loop gain of an Op-Amp is a low pass filter

with DC gain 144dB and cut-off frequency f0 = 10Hz, sketch in a
bode diagram, the magnitude of the frequency response of a non-
inverting stage with gain G = 10 at 10Hz.

2. Prove that the good integrator condition for the circuit in figure 4.6
is ω � 1/RfCf . (Hint: calculate the response of the circuit and com-
pare it with the ideal response of the ideal inverting integrator, i.e.
A(ω) = −1/(jωRC). Calculate the DC gain of the integrator transfer
function.

3. Using an integrator stage with a feedback resistor Rf , and time con-
stant τ = RC, compute the values for τ and Rf needed to integrate
a sinusoidal wave with frequency f > 1kHz and with 10% of losses
in the integration. Choose a value of R � Rs, where Rs = 50Ω is the
input impedance of the used function generator.

4. Show that the slope of an integrated square wave is the inverse of
of the time constant τ = RCf of the Integrator shown in figure 4.6.
Which characteristics of the square wave are needed to fulfill the re-
quirement to not saturate the integrator output ?

5. Consider a differential stage having the following resistances values:
R1 = R2 = 50kΩ, Rf = R0 = 100kΩ . Calculate the following quanti-
ties

(a) the two input impedances Z1and Z2 ,

(b) the output impedance Z0,

(c) Considering that the Op-Amp max output current and voltage
are respectively Imax =10mA and Vmax = 10V, calculate the
smallest load Rmin it can drive .

6. The output impedance of an Op-Amp is Ri = 50Ω, and its open-loop
gain is that shown in figure 4.12. Sketch in an approximate asymp-
totic Bode plot the Op-Amp magnitude impedance as a function of
the frequency.
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4.6 Laboratory Procedure
Read carefully the entire procedure before starting the experiment, and
note on your log book all the unpredicted behavior you experience in the
circuits response.

Consult the data-sheet to properly map the µ741 and AD711 Op-Amp
pin-out.

Op-Amp output high frequency noise can be reduced by adding 100nF
capacitors closest as possible to the ±15V power supplies input of the Op-
Amp.

Before powering your circuit up, cross-check the power supply con-
nections.

It is always a good practice to turn on the power supplies at the same
time to avoid potential damages of the Op-Amps.

Using the µ741 Op-Amp, do the following steps:

• Using a non-inverting configuration with a gain of 100, verify the
transfer function of the Op-Amp.

• Using the same previous circuit, estimate the slew rate of the Op-
Amp. Redo the same measurement using an AD711 Op-Amp.

• Study the CMRR using a differential configuration. Use a poten-
tiometer to balance the gains at just one frequency and then measure
theCMRR. Verify that the obtained values are in agreement with the
specifications reported in the Op-Amp data-sheet. Mount and tune
the null adjustment circuit as specified in the Op-Amp data-sheet.

Build an integration stage using an Op-Amp having a time constant τ ∼
100µs. Include a feedback resistor Rf to avoid saturation at the output and
do the following steps:

• Measure the impulse response.

• Measure the frequency response.

• Estimate the integrator time constant τ using a square wave.
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Chapter 5

Basic Op-Amp Applications

5.1 Introduction

In this chapter we will briefly describe some quite useful circuit based on
Op-Amp, BJT transistors and diodes.

5.1.1 Inverting Summing Stage

Vo

I

R

R

R

I

R f

I

−

+

A

I

I

V1

V

V2

1

2

n

n

Figure 5.1: Summing stage using an Op-Amp.

Figure 5.1 shows the typical configuration of an inverting summing
stage using an Op-Amp. Using the virtual ground rule for node A and

105
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Ohm’s law we have

In =
Vn
R
, I =

N
∑

n=1

In.

Considering that the output voltage V0 is

Vo = −RfI,

we will have

Vo = A
N
∑

n=1

Vn, A = −Rf

R
.

5.1.2 Basic Instrumentation Amplifier

Instrumentation amplifiers are designed to have the following characteris-
tics: differential input, very high input impedance, very low output impedance,
variable gain, and good thermal stability. Because of those characteristics
they are suitable to be used as input stages of electronics instruments.

Figure 5.2 shows a configuration of three operational amplifier neces-
sary to build a basic instrumentation amplifier. Some of the problems of
the the differential amplifier of figure 4.7 are still present in this circuit,
such as how to implement the variable gain, and gain thermal stability.
For better architectures see [3].

Vo

R

−

+

R

V2

V1

−

+

−

+

2

R f

R0

1

Figure 5.2: Basic instrumentation amplifier circuit.
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5.1.3 Voltage to Current Converter (Transconductance Am-
plifier)

A voltage to current converter is an amplifier that produces a current pro-
portional to the input voltage. The constant of proportionality is usually
called transconductance. Figure 5.3 shows a Transconductance Op-Amp,
which is nothing but a non inverting Op-Amp scheme.

−

+

R Z f

R f

Z f

fi

v (t)s

Amperometer

Figure 5.3: Basic transconductance amplifier circuit.

The current flowing through the impedance Zf is proportional to the
voltage vs. In fact, supposing the infinite input impedance of the Op-Amp,
we will have

if(t) =
vs(t)

Rf
.

Placing an amperometer in series with a resistor with large resistance
as a feedback impedance, we will have a high resistance voltmeter. In
other words, the induced perturbation of such circuit will be very small
because of the very high impedance of the operational amplifier.

5.1.4 Current to Voltage Converter (Transresistance Ampli-
fier)

A current to voltage converter is an amplifier that produces a voltage pro-
portional to the input current. The constant of proportionality is called
transimpedance or transresistance, whose units are Ω. Figure 5.4 show a basic
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configuration for a transimpedance Op-Amp. Due to the virtual ground
the current through the shunt resistance is zero, thus the output voltage is
the voltage difference across the feedback resistor Rf , i.e.

vo(t) = −Rf is(t).

−

+Rs

R f

is

v =−i Rfso

si

Figure 5.4: Basic transimpedance Op-Amp.

Photo-multipliers photo-tubes and photodiodes drivers are a typical
application for transresistance Op-amps. In fact, quite often the photocur-
rent produced by those devices need to be amplified and converted into a
voltage before being further manipulated.

5.2 Logarithmic Circuits
Combining logarithmic circuits such as logarithmic and anti-logarithmic
amplifiers we can implement analog multipliers and dividers. Let’s see in
more details how those circuit work.

For improved logarithmic circuits consult [1] chapter 7, and and [1]
section 16-13.

5.2.1 Logarithmic Amplifier
Figure 5.5 shows an elementary logarithmic amplifier, i.e. the output is
proportional to the logarithm of the input. A BJT as feedback provides
a larger input dynamic range. Let’s analyze the logarithmic amplifier in
more detail.



5.2. LOGARITHMIC CIRCUITS 109

Vo

V i
−

G
+

Vo−

G
+

V i

Q 

R

D

R

Figure 5.5: Elementary logarithmic amplifier

Because the Op-Amp is mounted as an inverting amplifier, if vi is pos-
itive, then vo must be negative and the diode is in conduction.

We must have
i ' Ise

−qVo/kBT Is � 1,

where q < 0 is the electron charge. Considering that

i =
vi
R
,

and after some algebra we finally get

vo =
kBT

−q [ln (vi) − ln (RIs)] .

The constant term ln (RIs) is a systematic error that can estimated and
subtracted at the output. It is worth to notice that vi must be positive to
have the circuit working.

5.2.2 Anti-Logarithmic Amplifier

Figure 5.6 shows an elementary logarithmic amplifier, i.e. the output is
proportional to the inverse of logarithm of the input. Same remarks of the
logarithmic amplifier about the npn BJT applies to this circuit.

The current flowing through the diode or the BJT is

i ' Ise
−qVi/kBT Is � 1,
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Figure 5.6: Elementary anti-logarithmic amplifier

where in the argument of the exponential function we have the input volt-
age. Considering that

vo = −Ri ,
thus

vo ' −RIse−qVi/kBT .

If the input vi is negative, we have to reverse the diode’s connection or
replace the BJT with a pnp BJT.

R

R
−

G
+

anti−Logarithmic
Amplifier

v o

Logarithmic
Amplifier

Logarithmic
Amplifier

v 1

v 2

R

Figure 5.7: Elementary analog multiplier.

5.2.3 Analog Multiplier
Figure 5.7 shows an elementary analog multiplier based on a two log one
anti-log and one adder circuits. Fore more details about the circuit see [1]
section 7-4 and [1] section 16-13.
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Figure 5.8: Elementary analog divider.

5.2.4 Analog Divider

Figure 5.7 shows an elementary logarithmic amplifier based on a two log
one anti-log and one adder circuits. Fore more details about the circuit see
[1] section 7-5 and [1] section 16-13.

5.3 Multiple-Feedback Band-Pass Filter

Figure 5.9 shows the so called multiple-feedback bandpass, a quite good
scheme for large passband filters, i.e. moderate quality factors around 10.

Here is the recipe to get it working. Select the following parameter
which define the filter characteristics, i.e the center angular frequency ω0

the quality factor Q or the the passband interval (ω1, ω2) , and the passband
gain Apb

ω0 =
√
ω2ω1

Q =
ω0

ω2 − ω1

Apb < 2Q2

Set the same value C for the two capacitors and compute the resistance
values
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Figure 5.9: Multiple-feedback band-pass filter.

R1 =
Q

ω0CApb

R2 =
Q

ω0C (2Q2 − Apb)

R3 =
Q

ω0C

Verify that

Apb = 2
R3

R1
< 2Q2

See [1] sections 8-4.2, and 8-5.3 for more details.

5.4 Peak and Peak-to-Peak Detectors
The peak detector circuit is shown in figure 5.10. The basic ideal is to
implement an integrator circuit with a memory.

To understand the circuit let´s first short circuit Do and removeR. Then
the Op-amp A0 is just a unitary gain voltage follower that charges the ca-
pacitor C up to the peak voltage. The function of D0 and if A1(high input
impedance) is to prevent the fast discharge of the capacitor.
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Figure 5.10: Peak detector circuit.

Because of D0 the voltage across the capacitor is not the max voltage at
the input, and this will create a systematic error at the output Vo.Placing
a feedback from Voto Vi will fix the problem. In fact, because V+must be
equal to V−, A0 will compensate for the difference.

Introducing the resistance (R ' 100kΩ) in the feedback will provide
some isolation for Vo when Vi is lower than VC .

The Op-Amp A0 should have a high slew rate (at least ~20 V/µs) to
avoid the maximum voltage being limited by the slew rate.

The capacitor doesn´ t have to limit the Op-Amp A0 slew rate S, i. e.

iC
C

� dV

dt
= S

It is worthwhile to notice that if D0 and D1 are reversed the circuit
becomes a negative peak detector.

Using a positive and a negative peak detector as the input of a differen-
tial amplifier stage we can build a peak-to-peak detector (for more details
see [1] section 9-1).

5.5 Zero Crossing Detector

When viis positive and because it is connected to the negative input then
vo becomes negative and the diode D1is forward biased and conducting..
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5.6 Analog Comparator

An analog comparator or simply comparator is a circuit with two inputs vi,
vref and one output vowhich fulfills the following characteristic:

vo =

{

V1 , vi > vref
V2, vi ≤ vref

An Op-Amp with no feedback behaves like a comparator. In fact, if we
apply a voltage vi > vref , then V+ − V− = vi − vref > 0. Because of the
high gain, the Op-Amp will set vo to its maximum value +Vsatwhich is a
value close to the positive voltage of the power supply. If vi < vref , then
vo = −Vsat. The magnitude of the saturation voltage are typically about
1V less than the supplies voltages.

Depending on which input we use as voltage reference vref , the Op-
amp can be an inverting or a non inverting analog comparator.

5.7 Regenerative Comparator (The Schmitt Trig-
ger)

The Regenerative comparator or Schmitt Trigger shown in figure 5.11 is a com-
parator circuit with hysteresis.

It is worthwhile to notice that the circuit has a positive feedback. With
positive feedback, the gain becomes larger than the open loop gain making
the comparator swinging faster to one of the saturation levels.

Considering the current flowing through R1 and R2,we have

I =
V1 − V+

R2

=
V+ − Vo
R1

, ⇒ V+ =
V1R1 + VoR2

R1 +R2

.

The output Vo can have two values, ±Vsat. Consequently, V+will as-
sume just two trip points values

V
(utp)
+ =

V1R1 + VsatR2

R1 +R2
V

(ltp)
+ =

V1R1 − VsatR2

R1 +R2

When Vi < V
(utp)
+ , Vo is high, and when Vi < V

(ltp)
+ , Vo is low.
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Figure 5.11: Schmitt Trigger.
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To set V+ = 0 it requires that

V1 = −R2

R1
Vo

This circuit is usually used to drive an analog to digital converter (ADC).
In fact, jittering of the input signal due to noise which prevents from keep-
ing the output constant, will be eliminated by the hysteresis of the Schmitt
trigger (values between the trip points will not affect the output).

See [1] section 11 for more detailed explanations.

Example1: (Vsat = 15V)

Supposing we want to have the trip points to be V+ = ±1.5V , if we set
V1 = 0 then R2 = 9R1.

5.8 Phase Shifter

−

G
+

Vi
Vo

1kΩ

100kΩ

100kΩ

10nF

Figure 5.12: Phase shifter circuit.

A phase shifter circuit shown in figure 5.12, produces a signal at the
output Vo which is equal to the input Vi with a phase shift ϕ given by the
following formula

tan

(

|ϕ|
2

)

=
1

RCω
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Supposing that we want a phase shift of 90ofor a 1kHz sinusoid , then

R =
1

tan
(

ϕ
2

)

Cω
=

1

1 · 10−8 · 2π · 103
= 15.915kΩ.

Exchanging the potentiometer and the capacitor changes lead to lag.
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5.9 Problems Preparatory to the Laboratory
1. Considering the following circuit, determine the voltage output Vo

for the following input voltages Vi = −2V, 1V, 1.5V, 3V

−

G
+

Vi

Vo

−10V

+10V

+1.5V

2. Consider the Schmitt trigger of figure 5.11.

(a) If Vo = −15V and V+ = 0V, compute V1.

(b) If Vo = +15V, and V1 = 15V, compute V+.

3. Design a Schmitt trigger with two diode clamps and one resistor con-
nected to the output.

(a) Limit the output Vo from 0 to 5V.

(b) Compute the resistance valueR necessary to limit the diode cur-
rent to 10mA.

4. Chose at least two circuit to study and design.
New circuits different than those ones proposed in this chapter are
also welcome. For a good source of new circuits based on Op-Amps
see [1] , [2], and [1].

5.10 Laboratory Procedure
No special procedure is required for this laboratory week. The student is
encouraged to study, build and test more than one circuit (two at least).
It is important also to try to find out limitations and measure the perfor-
mance of each single circuit. Students are also encouraged to try basic
Op-Amp applications different from the ones suggested in this notes.

As usual, a report of the work done during the laboratory hours is
required.
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Consult the data-sheet to properly connect the devices pin-out.
Before powering your circuit up, always cross-check the power supply

connections. It is always a good practice to turn on the dual power supply
at the same time to avoid potential damages of electronic components.
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Chapter 6

Basics on Oscillators

6.1 Introduction

Waveform generators are essentially circuits which provide a periodic sig-
nal with constant frequency, phase, and amplitude. The quality of these
devices are measured by the frequency, and amplitude stability and ab-
sence of distortion. The last characteristics is essentially cleanness of the
spectrum signal. For example, the spectrum of a perfect sinusoidal os-
cillator must be a delta of Dirac at the oscillating frequency. Practically,
sinusoidal oscillators has a sharp narrow peak at the oscillation frequency,
and other less taller peaks at different frequencies, mainly at multiples of
the oscillation frequency (harmonics ).

In this chapter we will study the criterion to sustain a sinusoidal oscil-
lation with a positive feedback amplifier, the so-called Barkhausen crite-
rion, and some simple circuit to produce different wave forms.

6.2 Criterion for Sinusoidal Oscillation (Barkhausen
Criterion)

Let’s consider an amplifier with a positive feedback network as show in
figure 6.1. Considering that the summation point output is

Vi + β(ω)Vo,
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VoVi
V  +   Vβ oi

Voβ

β(ω)

A(ω)

Figure 6.1: Amplifier with positive feedback

and the amplifier gain is A(ω), the output voltage will be

Vo = A(Vi + βVo),

Collecting Vo we will finally have

Vo =
A

1 − βA
Vi.

For
|β(ω)A(ω)| = 1, arg [β(ω)A(ω)] = 0, 360, ...

the output Vo diverges. Supposing that the previous condition is sat-
isfied for a given angular frequency ω0, any excitation at the frequency ω0

will make the output to oscillate at the frequency ω0 with an undefined
amplitude. The previous condition which can be rewritten as

<[βA] = −1, =[βA] = 0

is the so called Barkhausen criterion for the oscillation.
The term βA is called the loop gain since that is exactly the gain of the

loop in the feedback amplifier network. Sometimes, it is also called open
loop gain.

6.2.1 Practical Considerations
Oscillators with exactly unitary loop gain and Vi = 0 are just a mere ab-
straction. Moreover, drifts due to temperature and aging would make this
condition impossible to keep.
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Figure 6.2: Phase shift oscillator using a JFET as amplification stage (left
gray rectangle) and a phase shift network (right gray rectangle). The cir-
cuit on the left represents the low frequency model of the JFET amplifier.

Practically, it is necessary to have a loop gain somewhat larger than
unity (Aβ ' 1.05) to sustain the oscillation. This can lead to a slow drift of
the oscillation amplitude which can produce a saturation effect.

Large values of the amplifier gain A produce saturation at the output
and can be used to generate squares or pulse waves.

It is important to notice that we don’t have to provide an initial kick to
start the oscillation. This is true, because every time we switch a circuit on
a step propagates through the circuit providing an initial excitation at the
right frequency. Moreover, the probability to have a small signal fluctua-
tion at the right frequency are usually quite high.

The frequency stability of the oscillator depends mainly on the ability
of the circuit to maintain the loop gain phase constant to 0◦or multiple of
360◦.

In the discussion of some oscillator circuits we will assume that the
amplifier is able to deliver the required positive or negative gain without
adding any additional phase. In the general case, this is clearly a crude
approximation, but it is used just to simplify the study of the circuits.
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6.3 Phase Shift Oscillator
The phase shift oscillator exemplifies the concepts set forth above. Re-
ferring to figure 6.2, we can distinguish the JFET amplifier stage and the
positive feedback network made of three cascaded RC phase shifting fil-
ters.

Supposing that the amplifier load ZL is negligible, i.e. |ZL| � RD||rd
then, the amplifier will just change sign (180◦) to any signal injected in the
gate. The network feedback will provide additional phase shift to satisfy
the Barkhausen criterion at a given angular frequency ω0.

It can be proved that

β(ω) =
Vi
Vo

=
1

1 + 5
(ωτ)2

+ j
(

1
(ωτ)3

− 6
ωτ

) τ = RC , (6.1)

The amplifier gain, supposed to be constant is A = −gmRD, where gm is
the JFET amplifier gain.

Imposing the condition =[βA] = 0, we get

ω0 =
1√
6

1

τ
.

Replacing the previous expression in the open loop gain Aβ and using
the second condition = [βA] = −1, we get

gmRD = 29

To sustain the oscillation, the amplifier must have a gain of at least
29/RD.

6.4 The Wien Bridge Oscillator
The Wien Bridge Oscillator show in figure 6.3, uses a differential amplifier
to provide positive and negative feedback to satisfy the two condition of
oscillation.

Referring to figure 6.3 , setting YC = 1/ (jωC) , and thanks to the volt-
age divider equation we can write

V+ =
RYC

YC+R

R + YC + RYC

YC+R

Vo =
1

(YC+R)2

RYC
+ 1

Vo =
1

YC

R
+ R

YC
+ 3

Vo
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Figure 6.3: Wien bridge oscillator, and components rearrangement to show
the bridge topology.

and
β(ω) =

V+

Vo
=

1

3 + j
(

ωτ − 1
ωτ

) τ = RC.

The oscillation will happen where the phase shift is zero, i.e. for

ωτ − 1

ωτ
= 0, ⇒ ω0 =

1

τ
.

The angular oscillation frequency ω0 depends on the inverse of the re-
sistance R and the capacitance C.

Because the attenuation at the resonant frequency is

V+

Vo
=

1

3
.

the negative feedback must have a theoretical gain of A(ω0) = 3. The
resistances R− and Rf must be given by the usual equation

Vo‘
V+

= 1 +
Rf

R−

.
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R f

D0

D1

R f

Figure 6.4: Automatic gain control circuit for the Wien bridge oscillator
negative feedback.

The oscillation frequency can be continuously tuned using coupled
variable resistors.

To minimize distortions due to the Op-amp saturation when the gain is
larger than one, it is required to provide a circuit with variable gain. Essen-
tially, we need an overall gain larger than one for small signal to sustain
the oscillation and gain of about 1 or less for large signal to avoid distor-
tion. The negative feedback path shown in figure 6.4 does the job. For
large signals the one diodes becomes forward biased reducing the feed-
back resistance and the Op-Amp gain. For smaller signal the gain is not
affected by the diodes.

Practically, Wien Bridge oscillators are used in the kilohertz region with
a variable range up to ~10 times ω0.

6.5 LC Oscillator
A quite general form of oscillator circuits is depicted in figure 6.6. Let’s
suppose that the amplifier is ideal but has a non zero output resistance Ro.
Referring to figure 6.6, and using the voltage divider equation we have

Vo = − ZL
Ro + ZL

AV−, ZL = Z2|| (Z1 + Z3) .

After some algebra we get

β = − Z1Z2

Ro (Z1 + Z2 + Z3) + Z2 (Z1 + Z3)
. (6.2)
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Figure 6.5: LC Oscillator circuit. The resistanceRo is the output impedance
of the Op-Amp.

Let’s consider the case of the LC tunable oscillators, i.e. the impedances
are purely reactive (real part equal to zero)

Zi = jXi , Xi > 0 for i = 1, 2, 3

Then the previous formula becomes

β =
X1X2

jRo (X1 +X2 +X3) −X2 (X1 +X3)
.

For β to be real
X1 +X2 +X3 = 0 ,

and
β(ω0) = − X1

X1 +X3
,

where ω0 is the oscillation frequency. Using the two previous equation we
finally get

β(ω0) =
X1

X2

.

Since β(ω0) must be positive, X1and X2 must have the same sign, which
means that they have to be the same kind of reactance, two capacitors or
two inductors. From the condition of imaginary part equal to zero we
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L1

C3

C2

L3

C1

L2

Figure 6.6: Colpitts (left) and Hartley (right) feedback circuits β(ω) for the
LC oscillator circuit.

find that if X1 and X2 are capacitors X3 must be an inductor, and vice
versa. Here is the oscillator circuit name depending on the choice of the
reactance:

• Colpitts Oscillator: X1 and X2 capacitive reactances and X3 an in-
ductive reactance ( X1,2 = −1/(ωC1,2), X3 = ωL3).
The oscillator angular frequency and the gain in this case are

ω0 =

√

√

√

√

1

L3

(

C1C2

C1+C2

) , β(ω0) =
C2

C1

• Hartley oscillator: X1 and X2 inductive reactances and X3 a capaci-
tive reactance ( X1,2 = ωL1,2, X3 = −1/(ωC3)).
The oscillator angular frequency and the gain in this case will be

ω0 =

√

1

C3 (L1 + L2)
, β(ω0) =

L1

L2

Using a BJT amplifier we can usually obtain higher oscillating frequency
than using standard operational amplifiers. In this case the high frequency
hybrid-π model[1] must be used to properly model the transistor behavior.
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Figure 6.7: Circuit symbol for a piezoelectric oscillator (or quartz oscilla-
tor) and the equivalent electronic circuit. The LCR series circuit accounts
for the sharp mechanical resonance The capacitor Cpin parallel describes
the capacitance of the crystal for frequency far for the resonance.

6.6 Crystal Oscillator

Crystal oscillators are based on the property of piezoelectricity1 exhibited
by some crystals and ceramic materials. Piezoelectric materials change
size when an electric field is applied between two of its faces. Conversely,
if we apply a mechanical stress, piezoelectric materials generate an electric
field. Some crystals have internal mechanical resonances with very high
quality factors (quartz can reach quality factors of 104) 2 and can be indeed
used to generate very stable oscillators.

Figure 6.7 shows the circuit symbol for a piezoelectric component and
the equivalent circuit modeled using ideal components.

Usually, to apply an electric field to a crystals is necessary to make a
conductive coating on two parallel faces, and this process creates a capaci-
tor with an interposed dielectric. This explain the presence of the capacitor
of capacitance Cp in the model. The LCR series circuit accounts for the par-

1Piezoelectricity was discovered by Jacques and Pierre Curie in the 1880’s during ex-
periments on quartz.

2Mechanical resonance stability depends mainly on the fact that the resonance value
is determined by the crystal geometry. It the crystal size slightly depends on the tem-
perature we can have very stable resonators. Active temperature stabilization can clearly
improve frequency stability.
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ticular mechanical resonance we want to use to build the oscillator.
To design a crystal oscillator it is important to study the reactance ( the

imaginary part of the impedance) whose qualitative behavior is shown in
figure ?? . Where the reactance is essentially inductive and very close to
the resonance, the crystal behaves as a simple equivalent inductor. We can
indeed replace the inductor Ls of the LC oscillator of figure 6.6 with the
piezoelectric crystal to build a simple oscillator.

Crystal oscillators using a Colpitts configuration and a BJT in common-
emitter or common-collector configuration, can work from few kHz up to
~100MHz.

6.7 Charge and Discharge Oscillator (Relaxation
Oscillator)

TBD

6.8 Problems Preparatory to the Laboratory
1. Replace a JFET amplifier of the phase shift oscillator with an Op-

amp. Hint: the amplifier configuration must provide 180◦ of phase
shift and the virtual ground can be used to simplify the feedback
network and amplifier.
Find the components values to satisfy the Barkhausen criterion for
an oscillating frequency ν = 5kHz.

2. Design a Wien bridge oscillator with a frequency of 1kHz, 5kHz and
10kHz.

3. Derive the expression 6.2 of β(ω) for the LC oscillator.

6.9 Laboratory Procedure
Read carefully the entire procedure before starting the experiment.

Consult the data-sheet to properly connect the devices pin-out.
Before powering your circuit up, cross-check the power supply con-

nections.
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It is always a good practice to turn on the dual power supply at the
same time to avoid potential damages of circuit components.

Note on your log book all the unpredicted behavior you experience in
the circuits response.

1. Build a Wien bridge sinusoidal oscillator with a frequency ν between
1kHz and 10kHz with a µ741 Op-Amp. Use a potentiometer to match
the resistances of the positive feedback network. Arrange more than
one capacitor to obtain two capacitances with the same value. Ne-
glect first the automatic gain control circuit highlighted in the gray
box in the figure below

V+

R fR−

Vo

D0

D1

−

A
+

R f R f

CR

CR

(a) Measure the open loop transfer function A(ω)β(ω) to verify the
gain and phase around the resonance.

(b) Compare the measured oscillator frequency 〈ω0〉Expwith the the-
oretical value ω0.

(c) Check the behavior of the circuit when the open loop gain Aβ is
greater than one or smaller than one



134 CHAPTER 6. BASICS ON OSCILLATORS

(d) Add the AGC circuit and tune the gain to properly sustain the
oscillation.

(e) Verify that the oscillator can be tuned by changing the resistors
or the capacitors pair.

(f) Measure the spectrum of your oscillator using a spectrum ana-
lyzer, and compute the total harmonic distortion

THD =
1

V 2
0

N
∑

n=1

V 2
n ,

where Vn is the amplitude of the nth-harmonic frequency. N is
determined by the resolution of the instrument and the required
precision.
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Appendix A

Fourier Analysis

A.1 Discrete Spectrum
The Fourier analysis is a fundamental an extremely useful method to char-
acterize a generic signal. It is based on the Fourier theorem which states1

that any periodic function vT (t) can be represented as a series of sines with
different amplitudes Vn , and frequency ω = nω0 , i.e.

vT (t) =
∞
∑

n=0

Vn sin (ω0nt) , ω0 =
2π

T
.

The set of points (ω, Vn) is called discrete spectrum of the function and
is given by the following integrals

Vn =
2

T

∫ T

0
vT (t) sin (ω0nt) dt.

A.1.1 Example: Square Wave
If we consider a square wave symmetric respect to the time axis

vT (t) =

{

v0, 0 ≤ t < T/2
−v0, T/2 ≤ t < T

,

then the corresponding Fourier series is

vT (t) =
∞
∑

i=0

4v0

π

1

2n + 1
sin [(2n + 1)ω0t] .

1Here the Fourier series theorem is not enunciated in its most general form.
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FourierExample.eps not found!

Figure A.1: Time domain representation (left) and frequency domain rep-
resentation (right) of a square wave signal.

Figure A.1 shows the time domain representation of the signal and its
frequency domain representation or frequency spectrum.

A.2 Continuous Spectrum
Using Fourier transform operator, the representation in the frequency do-
main can be extended to any type of signal v(t)

v(t) =
∫ +∞

−∞

V (ω)eiωτdω

and in this case we will have a continuum spectrum given by the Fourier
integral

V (ω) =
1

2π

∫ +∞

−∞

v(t)e−iωτdτ.

It is important to notice that v(t) can be any type of signal even a ran-
dom signal, in other words a noise. Real signals can be considered as the
sum of deterministic and random signals. If we compute a spectrum of
such a signal we expect to see the contribution of both, i.e. the noise spec-
trum which is present at all frequencies and the signal spectrum.

A.2.1 Spectrum Estimation

For practical purposes, the spectrum is always estimated in a finite inter-
val, (nobody can wait that long to compute a spectrum). The signal is
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Figure A.2: Sinusoidal signal produced by a function generator (Tektroniχ
GFG253) and acquired using a Spectrum analyzer (Stanford SR785).

acquired using an analog to digital converter and then numerically pro-
cessed using the fast Fourier transform algorithm to estimate the spec-
trum. The results is a truncated discrete spectrum, which estimates the
signal continuous spectrum.

A.2.2 Power Spectral Density and Units

The square of the Fourier coefficients |V (ω)|2, which are proportional to
the signal power are calculated to estimate the signal spectrum. Normal-
izing those coefficients by the frequency step size (bin) of the discrete spec-
trum we obtain the so called power spectral density (PSD). This operation is
mainly done to allow the amplitude comparison of spectra taken with dif-
ferent bins. In this case, the coefficients units are

[

|V (ω)|2
]

=
[power arbitrary units]

Hz
.
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Quite often, the square root of the PSD is considered, and unfortunately, it
is quite common to find scientists who inaccurately call it PSD.

A.2.3 Example: Sinusoidal Function Generator

Figure A.2 shows a sinusoidal signal produced by a function generator
and acquired with a digital instrument called spectrum analyzer. The fre-
quency spectrum computed using the same instrument, is shown in figure
A.3. The lower plot of figure A.3 shows the same spectrum between 500Hz
and 10kHz with a horizontal linear scale to emphasize the harmonics con-
tent.

If we look at the time domain, it is quite difficult to see any harmonic
distortion of the signal. On the contrary, the frequency domain represen-
tation clearly shows all the signal distortions.

The fundamental frequency is ν0 = 1.02kHz and the amplitude is V0 =
0.26V/

√
Hz. The next harmonic, the second taller peak, has an amplitude

V1 = 0.8mV/
√

Hz, which implies that the fundamental frequency ampli-
tude is at least more than 300 times larger than each high order harmonics.

Considering the time domain plot, the amplitude of the sinusoid is
V0 = 0.5Vpk , then the frequency bin amplitude must be ∆ν = 3.7Hz
(0.5/

√
3.7 = 0.26V/

√
Hz).

The spectrum also shows several peaks symmetric around the funda-
mental frequency ν0 due to unwanted amplitude modulations of the fun-
damental frequency.

The other feature visible in the spectrum is the noise floor, i.e the noise
level around the peaks base. This noise floor is reasonably flat above ν0

with a magnitude δV ' 0.2 − 0.3µV/
√

Hz. Below ν0 seems to have a neg-
ative slope and an average value of δV ∼ 0.7µV/

√
Hz .

The so called power lines (60Hz and harmonics) are clearly visible in
the spectrum.

In general, it is important to know and measure the resolution of the
instrument to be certain that the noise level measurement is not dominated
by the instrument noise. Moreover, the instrument resolution depends on
the input dynamic range. The larger is the dynamic range the worst is
the instrument resolution. Quite often, the dynamic range can be reduced
removing the DC component of the signal to measure. In this particular
case, a better resolution could be achieved reducing the dynamic range
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with a notch filter tuned at the frequency ν0.
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Figure A.3: Sinusoidal signal spectrum of figure A.2. Upper plot shows
the spectrum with a logarithmic scale for the horizontal axis. The lower
plot uses a linear scale between 500Hz to 10kHz.



Appendix B

Impedance Models for Passive
Components

A more realistic frequency dependent model of passive components can
be achieved considering equivalent circuits made of ideal passive compo-
nents or components whose impedance depends on the frequency.

As a general remark, we can say that this kind of representation strongly
depends on the technology used to manufacture the electronics devices
and on the frequency range.

The particular equivalent circuit of a real component allows us to take
into account physical mechanism of the conduction in the passive com-
ponent such as the conductor the skin [?] effect, the proximity effect, and
dissipation phenomena of dielectrics.

For example, the skin effect arises with AC currents. In this case the
current density is not uniform across the conductor cross section. For a
conductor with a circular cross section the current density J(r) measured
at a distance r form the conductor surface is

J(r, ω) = J0e
−r/δ(ω)

where J0 is the current density on the surface and δ(ω) an effective distance
which goes like 1/

√
ω and depends on the type of conductor. The expected

resistance R of the conductor

R(ω) =
V

2π
∫

J(r, ω)dr
,

is indeed not constant as a function of the frequency.
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The proximity effect arises when two or more conductors are close
enough that their varying electromagnetic fields perturbs the currents in
the adjacent conductors. This effect depends on the geometry of the sys-
tem and on the frequency of the currents, i.e of the electromagnetic fields.

B.1 Resistor
The realistic model of a resistor of nominal resistance R is shown in figure
B.1. This is particularly important when the resistance is made out of a
resistive wire.

RealResistor.eps not found!

Figure B.1: Equivalent representation of a resistor with nominal resistance
R using ideal components.

The ideal passive components are needed to model the following mech-
anisms:

• R The resistance measured across the resistor in the DC regime.

• Ls The inductance of the wires. If the resistor is a coil, the inductance
is clearly not negligible at high frequency .

• Cp The capacitance of the wire. if the resistor is a coil, the capacitance
at high frequency is essentially due to the capacitance among the
windings,

Up to 100MHz, the common used carbon dioxide resistors, have negligible
values of Ls and Cp. Their more important constraint is the maximum dis-
sipated power, which cannot exceed few watts. common high dissipating
resistors are made of a spooled resistive wire .
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B.2 Capacitor

Two more realistic models of a capacitor of nominal capacitance C, is
shown in figure B.2.

RealCapacitor.eps not found!

Figure B.2: Starting from left, the ideal capacitor, the high frequency model
for a capacitor (typically above 20MHz) , and the low frequency model
(below 20MHz).

The ideal passive components are needed to model the following mech-
anisms:

• C the capacitance measured across the capacitor in the DC regime.

• Rs The resistance due electric contacts, solder , etc.

• Ls The inductance due to the leads.

• Rp(ω) The resistance of the dielectric used to build the capacitor which
depends on the frequency.

Quite often, for frequencies below about 20MHz, Ls and Rs can be ne-
glected. In this case, to characterize the capacitor it is used to the define
the so called loss angle φ (see figureB.3) defined as

φ = arctan (RpC ω)

which is the complementatry angle of the sum of the current IRp
, and IC .

If φ = 0 the capacitor is ideal.
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CapacitorLossAngle.eps not found!

Figure B.3: Definition of the capacitior loss angle. If φ = 0 then the capaci-
tor has no losses and is ideal.

RealInductor.eps not found!

Figure B.4: Starting from left, the ideal inductor, the high frequency model
of the inductor above the typical resonance frequency ωL , and the low
frequency model for frequencies much below ωL.
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B.3 Inductor
The more realistic models of the inductor are shown in figure B.4.

The components shown in the models accounts for:

• L inductance of the inductor

• Rs(ω) ohmic resistance R due to the wire length ( constant) , the skin
effect, and the proximity effect.

• Cpcapacitive effect due to the proximity of the windings.

The sketched circuit resonates at the angular frequency

ωL =
1√
LC

√

1 − R2
s

C

L
.

For ω � ωL the capacitance becomes negligible and the inductor can be
modeled as a series of an inductor with inductance L and a resistor with
the ohmic resistance R.
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Appendix C

Decibels

C.1 Definition of Decibel
The decibel is defined as 10 times the logarithm in base ten of a power P
normalized to a reference power Pr , i.e.

X (dB) = 10 log10

P

Pr
. (C.1)

Considering that

P =
V 2

R
= RI2,

and supposing that we use the same reference resistance Rr for P , Pr,we
can rewrite equ. (C.1) as

X (dB) = 20 log10

V

Vr
= 20 log10

I

Ir
,

where Vr, and Ir are respectively the voltage and the current across the
reference resistance Rr. In other words, we have to measure the voltage or
the currents across equal impedaces, to get the decibels.

C.2 Generalization of the Use of Decibel
For practical purposes, the decibel is also used to report the ratio of homo-
geneus quantities such as the voltage output Vo over the voltage input Vi
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of a two port network, or more in general the ratio of any kind of homo-
geneus quantities x1, x2

X (dB) = 20 log10

x1

x2

.

In this case there is no normalization respect to a reference load Rr or
power Pr.

C.3 Useful Table and Properties
The next table is quite useful to easily translate decibels into magnitude

(dB) 0 1 2 3 4 5 6 7 8 9 10
Magnitude 1 1.1 1.2 1.4 1.6 1.8 2 2.2 2.5 2.8 3.2

For conveniece, let´s rewrite some useful properties of the logarithm
function

log(x y) = log x + log y,

log(x/y) = log x− log y,

log xn = n log x,

loga x = logb x/ logb a.

C.4 Standard Power References
Decibels comes in many flavors (different reference powers) depending on
the application, radio frequency, microwaves, optics, et cetera.

For example the following definition is quite often used

X (dBm)(Rr) = 10 log10

V 2/Rr

1mW
The value of Rr depends on the application field

Rr(Ω)

Radio Frequency 50
TV Frequencies 75

Audio Frequencies 600



Appendix D

Resistor Color Code

Nominal values of resistances are coded using colors bands around the
resistors (see figure below). The bands identify digits and the exponent
in base ten for the resistance value and the tolerance as explained in the
following table:

Band 1 2 3 4 5
Number (Tolerance band)
3 Bands Digit Digit Exponent Always 20%
4 Bands Digit Digit Exponent Tolerance
5 Bands Digit Digit Exponent Tolerance Tolerance after

1000 hours

3 Band resistors have no band for the tolerance because it is assumed to
be 20% of the nominal values.The fifth band is not an industry standard,
but quite often it means the tolerance after 1000 hours of continuous use.

Resistorbands.eps not found!

R = AB · 10C , ∆R = R ·D
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The bands are counted from left to right. The following table reports
the coding of the values using colors and a mnemonic sentence to remem-
ber the color code table.

Mnemonic Color Exponent Tolerance Tolerance (%)
Sentence (%) 5th Band
Big Black 0 20
Bart Brown 1 1 1%
Rides Red 2 2 0.1%
Over Orange 3 0.01%
Your Yellow 4 0.001%
Grave Green 5
Blasting Blue 6
Violent Violet 7
Guns Gray 8
Wildly. White 9
Go Gold -1 5
Shoot (him?) Silver -2 10

For example, the nominal resistance of a 4 band resistor having the
sequence brown, black, orange and gold is

Rnom. = 10kΩ
⇒ Rnom. = (10.0 ± 0.5)kΩ

∆Rnom. = 5%10kΩ

Resistor size (volume) is related to the power dissipation capability. Typi-
cal used values are 1/4W 1/2W, 1W.



Appendix E

The Cathode Ray Tube
Oscilloscope

E.1 The Cathode Ray Tube Oscilloscope
The cathode ray tube oscilloscope is essentially an analog1 instrument that is
able to measure time varying electric signals. It is made of the following
functional parts (see figure E.1):

• the cathode ray tube (CRT),

• the trigger,

• the horizontal input,

• the vertical input,

• time base generator.

Let’s study in more detail each component of the oscilloscope.

E.1.1 The Cathode Ray Tube
The CRT is a vacuum envelope hosting a device called an electron gun ,
capable of producing an electron beam, whose transverse position can be
modulated by two electric signals (see figures E.1 and E.7).

1Hybrid instruments combining the characteristics of digital and analog oscilloscopes,
with a CRT, are also commercially available.
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When the electron gun cathode is heated by wire resistance because
of the Joule effect it emits electrons . The increasing voltage differences
between a set of shaped anodes and the cathode accelerates electrons to a
terminal velocity v0 creating the so called electron beam.

Ramp
Generator

CATODE RAY TUBE (CRT)

V/div

Preamplifier Amplifier

INPUT CHANNEL

TRIGGER

Line(60Hz)

External

Internal

LevelSource s/div

TIME BASE GENERATOR

Figure E.1: Oscilloscope functional schematics
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The beam then goes through two orthogonally mounted pairs of metal-
lic plates. Applying voltage difference to those plates Vx and Vy, the beam
is deflected along two orthogonal directions (x and y ) perpendicular to
its direction z. The deflected electrons will hit a plane screen perpendicu-
lar to the beam and coated with florescent layer. The electrons interaction
with this layer generates photons, making the beam position visible on the
screen.

Sawtooth
signal

v (t)
y

t

t

t

T T

Trigger

Figure E.2: Periodic Signal triggering.

E.1.2 The Horizontal and Vertical Inputs

The vertical and horizontal plates are independently driven by a variable
gain amplifier to adapt the signals vx(t), and vy(t) to the screen range. A
DC offset can be added to each input to position the signals on the screen.
These two channels used to drive the signals to the plates signals are called
horizontal and vertical inputs of the oscilloscope.

In this configuration the oscilloscope is an x-y plotter.
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C0

Cs Rs Deflection 
Plates

Amplifier
High VoltageGND

AC

DC

Input

Pre−Amplifier

Figure E.3: Oscilloscope input impedance representation using ideal com-
ponents (gray box). Input channel coupling is also shown.

E.1.3 The Time base Generator

If we apply a sawtooth signal Vx(t) = αt to the horizontal input, the hori-
zontal screen axis will be proportional to time t. In this case a signal vy(t)
applied to the vertical input, will depict on the oscilloscope screen the sig-
nal time evolution.

The internal ramp signal is generated by the instrument with an am-
plification stage that allows changes in the gain factor α and the interval
of time shown on the screen. This amplification stage and the ramp gen-
erator are called the time base generator.

In this configuration, the horizontal input is used as a second indepen-
dent vertical input, allowing the plot of the time evolution of two signals.

Visualization of signal time evolution is the most common use of an
oscilloscope.

E.1.4 The Trigger

To study a periodic signal v(t) with the oscilloscope, it is necessary to syn-
chronize the horizontal ramp Vx = αt with the signal to obtain a steady
plot of the periodic signal. The trigger is the electronic circuit which pro-
vides this function. Let’s qualitatively explain its behavior.

The trigger circuit compares v(t) with a constant value and produces
a pulse every time the two values are equal and the signal has a given
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slope. The first pulse triggers the start of the sawtooth signal of period2 T
, which will linearly increase until it reaches the value V = αT , and then
is reset to zero. During this time, the pulses are ignored and the signal
v(t) is plotted for a duration time T. After this time, the next pulse that
triggers the sawtooth signal will happen for the same previous value and
slope sign of v(t), and the same portion of the signal will be re-plotted on
the screen.

E.2 Oscilloscope Input Impedance
A good approximation of the input impedance of the oscilloscope is shown
in the circuit of figure E.3. The different input coupling modes ( DC AC
GND ) are also represented in the circuit.

The amplifying stage is modeled using an ideal amplifier (infinite in-
put impedance) with a resistor and a capacitor in parallel to the amplifier
input.

The switch allows to ground the amplifier input and indeed to verti-
cally set the origin of the input signal (GND position), to directly couple
the input signal (DC position), or to mainly remove the DC component of
the input signal (AC position).

E.3 Oscilloscope Probe
An oscilloscope probe is a device specifically designed to minimize the
capacitive and resistive load added when the instrument is connected to
the circuit. The price to pay is an attenuation of the signal that reaches the
oscilloscope input3.

Let’s analyze the behavior of a passive probe. Figure E.4 shows the
schematics of the equivalent circuit of a passive probe and of the input
stage of an oscilloscope. The capacitance of the probe cable can be consid-
ered included in Cs

Considering the voltage divider equation, we have

H(jω) =
Vs
Vi

=
Zs

Zp + Zs
, (E.1)

2In general, the sawtooth signal period T and the period of v(t) are not equal.
3Active probes can partially avoid this problems by amplifying the signal.
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Cp

Rp

Cable
Coaxial

Cs

Vs

Rs

Oscilloscope Input Stage

Rp

Rs

Vi

Cp

Cs

Vs

Probe

Probe Tip

GND Clip

BA

Figure E.4: Oscilloscope input stage and passive probe schematics.The
equivalent circuit made of ideal components for the probe shielded cable
is not shown.

where
1

Zs
= jωCs +

1

Rs

,
1

Zp
= jωCp +

1

Rp

,

and then

Zs =
Rs

jωτs + 1
, Zp =

Rp

jωτp + 1
.

Defining the following parameters

τp = CpRp, α =
Rs

Rs +Rp

, β =
Cp

Cs + Cp
,

and after some tedious algebra, equation (E.1) becomes

H(jω) = α
1 + jωτp
1 + jω α

β
τp
,

which is the transfer function from the probe input to the oscilloscope in-
put before the ideal amplification stage.

The DC and high frequency gain of the transfer function H(jω) are
respectively

H(0) = α, H(∞) = β.
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Figure E.5: Qualitative transfer function from the under compensated
probe input to the oscilloscope input before the ideal amplification stage.
As usual, the oscilloscope input is described having an impedance Rs||Cs.

The numerator and denominator of H(jω) are respectively equal to
zero, (the zeros and poles of H) when

ω = ωz = j
1

τp
, ω = ωp = j

β

α

1

τp
.

Figure E.5 shows the qualitative behavior of H for α
β
> 1.

E.3.1 Probe Frequency Compensation

By tuning the variable capacitor Cp of the probe, we can have three possi-
ble cases

α

β
< 1 ⇒ over-compensation

α

β
= 1 ⇒ compensation
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α

β
> 1 ⇒ under-compensation

if α < β the transfer function attenuates more at frequencies above ωz,
and the input signal Vi is distorted.

if α = β the transfer function is constant and the input signal Viwill be
undistorted, and attenuated by a factor α.

if α > β the transfer function attenuates more at frequencies below ωp
and the input signal Viis distorted.

The ideal case is indeed the compensated case, because we will have
increased the input impedance by a factor α without distorting the signal.

The probe compensation can be tuned using a signal, which shows a
clear distortion when it is filtered. A square wave signal is very useful in
this case because, it shows a different distortion if the probe is under or
over compensated. Figure E.6 sketches the expected square wave distor-
tion for the two un-compensated cases.

It is worthwhile to notices that
α

β
= 1, ⇒ Rs

Rp
=
Cp
Cs
.

This condition implies that:

• the voltage difference V1 across Rs is equal the voltage difference V2

across Cs, i.e V1 = V2

• the voltage difference V3 across Rp is equal the voltage difference V4

across Cp , i.e. V3 = V4

• and indeed V1 + V2 = V3 + V4.

This means that no current is flowing through the branch AB, and we can
consider just the resistive branch of the circuit to calculate Vs. Applying
the voltage divider equation, we finally get

Vs =
Rs

Rs +R
Vi

The capacitance of the oscilloscope does not affect the oscilloscope in-
put anymore, and the oscilloscope+probe input impedance Ri becomes
greater, i.e.

Ri = Rs +Rp.
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t t

VV

Figure E.6: Compensation of a passive probe using a square wave. Left
figure shows an over compensated probe, where the low frequency con-
tent of the signal is attenuated. Right figure shows the under compensated
case, where the high frequency content is attenuated.
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Figure E.7: CRT tube schematics. The electron enters into the electric field
and makes a parabolic trajectory. After passing the electric field region it
will have a vertical offset and deflection angle θ.
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E.4 Beam Trajectory
Let’s consider the electron motion through one pair of plates.

The electron terminal velocity v0 coming out from the gun can be easily
calculated considering that its initial potential energy is entirely converted
into kinetic energy, i.e

1

2
µv2

0 = eV0, ⇒ v0 =

√

2
eV0

µ
,

where µ is the electron mass, e the electron charge, and V0 the voltage
applied to the last anode.

If we apply a voltage Vy to the plates whose distance is h, the electrons
will feel a force Fy = eEy due to an electric field

|Ey| =
Vy
h
.

The equation of dynamics of the electron inside the plates is

µz̈ = 0, ⇒ ż = v0,

µÿ = e|Ey|.

Supposing that Vy is constant, the solution of the equation of motion
will be

z(t) =

√

2
eV0

µ
t,

y(t) =
1

2

eVy
µh

t2.

Removing the dependency on the time t, we will obtain the electron
beam trajectory , i.e.

y =
1

4h

Vy
V0
z2,

which is a parabolic trajectory.
Considering that the electron is transversely accelerated until z = d,

the total angular deflection θ will be
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tan θ =

(

∂y

∂z

)

z=d

=
1

2

d

h

Vy
V0
.

and displacement Y on the screen is

Y (Vy) = y(z = d) + tan θD,

i.e.,

Y (Vy) =
1

2

d

h

1

V0
(
d

2
+D)Vy.

Y is indeed proportional to the voltage applied to the plates through a
rather complicated proportional factor.

The geometrical and electrical parameters of this proportional factor
play a fundamental role in the resolution of the instrument. In fact, the
smaller the distance h between the plates, or the smaller the gun voltage
drop V0, the larger is the displacement Y . Moreover, Y increases quadrat-
ically with the electron beam distance d.

E.4.1 CRT Frequency Limit
The electron transit time through the plates determine the maximum fre-
quency that a CRT can plot. In fact, if the transit time τ is much smaller
than the period T of the wave form V (t), we have

V (t) ' constant, if τ � T,

and the signal is not distorted.
The transit time is

τ =
d

v0
= d

√

µ

2eV0
.

Supposing that


















V0 = 1kV
d = 20mm
µc2 ' 0.5MeV
e = 1eV

⇒ τ ' 1ns
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Appendix F

Electromagnetic Field Noise

F.1 Introduction
Human and natural activities fill the surrounding space with electromag-
netic fields (radiation) creating a very complex and unpredictable frequency
spectrum of radiation. For example, domestic appliances, bulbs, fluores-
cent lights, and power line grids mainly irradiate at 60Hz and harmonics
of 60Hz. Radios, televisions, wireless internet connections, and cellular
phones networks are other typical sources, which fill the radiation spec-
trum from the kilohertz to the gigahertz region. Light mainly produced by
the sun pervades the spectrum in the optical region. Radioactivity, gamma
ray burst (GRB) emitted by astrophysical sources are for eaxmple respon-
sible for filling the high and very high region of the spectrum.

Portion of this so complex spectrum can be attenuated by the so called
electromagnetic shields but some others portions because of the energy
involved cannot be effectively even attenuated.

The so called radio frequency noise can be easily attenuated (shielded)
using a quite simple device known as the Faraday cage.

F.2 The Faraday Cage
Gauss’s law states that a closed surface will prevent extern electrostatic
fields from reaching the space enclosed by the surface. If the electric field
is slowly varying i.e., its wavelength λ is large compared to the typical size
d of the enclosure), then the field on the surface can be considered static
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and Gauss’s law is then applicable. This enclosure is commonly called
Faraday cage.

Using this crude approximation we can state that all frequencies much
smaller than the following

ν∗ ∼ c

d

where c is the speed of light, will be effectively attenuated. For example if
d = 1m then the Faraday cage will attenuate the external electromagnetic
fields with frequencies much smaller than ν∗ ∼ 300MHz.

F.3 Practical Considerations
Normally, when we perform a measurement we cannot easily fit the lab in
a small Faraday cage. Anyway, most of the time it is sufficient to enclose
the physical system under measurement inside the cage . Then to perform
the measurement we will have to connect the instrument sitting outside
the cage to the system. The instruments leads acting like an antenna will
still pick-up some of the ambient electromagnetic radiation. This effect can
be amplified if we touch one of the leads increasing the antenna effect. A
way to minimize this effect is to connect Faraday cages together. Reason-
ably good instruments have a built in Faraday cage connected to ground.
Connecting the cages to ground will create a more or less single effective
cage which will attenuate the electromagnetic noise pick-up.



Appendix G

Common Emitter BJT Amplifier

The common emitter BJT amplifier is one of the most simple design that
allows to set the voltage amplification Av quite independently from the
BJT characterstic.

To properly set the BJT working point we have to forward bias the
emitter base junction and reverse bias the collector base junction. But this
is not enough if we want to build an amplifier. The other requirement is to
set the voltage VCE where the VCE characteristic is flat and wide enough
to accomodate the output signal excursion. In other words, we don´t want
the output to swing into the saturation region or even worst into the break
down region.

The design parameters we have to fix are are IC ,VCE ,VCC , and essen-
tially, the VCE characteristics contains all the information we need to prop-
erly bias the BJT. As last remark, voltage gain and bias point are "inti-
mately" related and cannot be completely independent.

G.1 BJT Bias

The analysis of the circuit becomes quite easy if we observe from the VCE
characteristic that

IC � IB (G.1)

In fact, in this case we have that IBis negligible and the resistors RBand
Rbact as a simple voltage divider, i.e.
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Figure G.1: Common emitter equivalent circuit which simplifies the BJT
biasing

VBE =
Rb

Rb +RB
VCC (G.2)

The voltage difference VBE must be the voltage drop of a forward po-
larized diode junction typically 0.7V, and this is one of the parametes we
have to fulfill to properly bias the BJT. The equation G.2 set the value of
one resistor as a function of the other.

The other parameter is VCE. Applying the KVL to the output mesh we
will have

VCE = (RC +RE) IC + VCC (G.3)

Equation G.2, G.3 must be satified, but they are not enough to set all
the resistor values. The voltage gain will provide another constranint an
set the resitor values.

G.2 BJT Gain

Using the equivalent small signal circuit model for the BJT and consider-
ing the impedance of the ideal voltage and current sources we can con-
struct the circuit show in figure G.2. Then from that figure it is finally easy
to compute the voltage gain Av and the input and output impedance Ri

and Ro of the circuit.
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Rb
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Figure G.2: Small signal circuit model for the common emitter BJT ampli-
fier

In fact, the input and the output voltage are simply










Vi = REIE ' REIC , (IB � IC)

Vo = RCIC

, ⇒ Av '
RC

RE

G.3 Input and Output Impedance
The input impedance is the impedance seen from the inputs lead , and can
be easily computed considering that the ideal current source is an open
circuit, i.e.

Ri = Rb||RB||(hie +Re)

The output impedance is then

Ro = RC

G.4 Resume
Summarizing the results we have

VBE =
Rb

Rb +RB
VCC

VCC = (RC +RE) IC + VCE

Av =
RC

RE
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and resolving the equation respect the unknown parameters

RB = Rb

(

VCC
VBE

− 1
)

RE =
VCC − VCE
IC(1 + Av)

RC = AvRE

G.5 Example
Let´s set the following design values











Av = 20
VCC = 20V
IC = 10mA

Picking up a value for Rb and considering that to have a maximum
dynamic

VCE ' 10.3V

we finally get


















Rb = 1.0kΩ
RB = 27.5kΩ
RC = 882Ω
RE = 88Ω


