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Chapter 1

Data Analysis

Sections 1, 3, and 4 of the notes “Vademecum for Data Analysis Begin-
ners” contain the information necessary to complete test of this chapter. It
is indeed mandatory to read those sections before starting answering the
questions.

Some of the questions require the use of a computer program named
“CurveFit”, which will be explained during the first laboratory class. Sheets
to make graphs will be provided during the class.

Data Analysis Questions
1. The thickness d of the base of a cylindrical can is computed by mea-

suring the outside height H = (97.3 ± 0.2)mm and the inside height
h = (97 ± 1)mm. What is d and its uncertainty σd? Does the more
precise measurement of H affect the uncertainty σd?

2. A computer program gives values for two parameters in the follow-
ing form:

a = 12.37825 m/s, error on a =0.0286145 m/s
b = 3.2395e-3 m, error on b = 2.7481912e-05 m

How do you report these values?

3. A distance x is measured using a ruler of length l = 300mm, which
is too short for a direct measurement. Using the ruler stepwise nine

9



10 CHAPTER 1. DATA ANALYSIS

times, it is found that the distance x is equal to 2654mm. If the un-
certainty of each measurement is σ = 1mm, what is the uncertainty
σx on x ?

4. We have two measurements of the same quantity obtained using two
different techniques

p1 = (1.231 ± 0.019)kg/m2 and p2 = (1.262 ± 0.012)kg/m2 .

Do these two measurements agree?

5. Six measurements are made of the voltage difference across a resis-
tor. The results are as follows:

Measurement n. 1 2 3 4 5 6
Voltage Difference (V) 1.44 1.48 1.47 1.43 1.50 1.47

Compute the uncertainty of each measurement and the uncertainty
of mean value by hand, report the measurements in the proper for-
mat, and check your results with a computer program (eg. Curve-
Fit).
If the resistance is measured to be R = (15.1 ± 0.1) Ω , what is the
power P = V 2

R
dissipated by the resistor and its uncertainty σP ?

6. Let I = 1
2
M(R2 + r2). What is the equation for σI , if M , R and r are

measured quantities? If we require σI/I = 0.1%, what is the relative
precision for the measurements of M , R and r ? ( Suppose that
R = αr, α > 1, and ∆R = ∆r).

7. The voltage V along a transmission line is V (x) = V0 exp(−x/xa),
where x is the position along the line. Find xa and its uncertainty σxa

Measuring V0 , V and x. Find the best value of V0, which minimizes
σxa

.

8. The angle variation θ of a wheel rotating under a constant accelera-
tion, is measured at different times t. A plot of t2 vs. θ of the data
is fitted with a straight line y = a + bx. Supposing that the initial
angular velocity was zero, what are a and b? What is the value of σt2
for t = (1.32 ± 0.02) s? .

9. Plot the following set of data by hand on linear graph paper.
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x(s) 0.5 1.0 2.5 3.5 4.5 5.0 6.0
σx(s) 0.1 0.1 0.1 0.1 0.1 0.1 0.1
y(cm) 21.0 28.0 41.5 55.0 61.0 70.0 77.5
σy(cm) 1.0 1.0 1.0 1.5 2.0 3.0 1.0

Supposing that the best fitting curve of experimental data is a straight
line y = ax + b, graphically estimate the parameters a, and b.
Fit the data using an appropriate program (eg. CurveFit), and ana-
lyze the differences plot. Try to reconcile any significant differences
between the program fit parameters and your own.

10. Plot the following data by hand on both linear and semi-log graph
paper:

x(a.u.) 16 44 76 87 110
y(a.u.) 0.037 0.097 0.25 0.41 0.80

(Uncertainties on the y values are 6% of the value; i.e. σy = 0.06y.)

Determine a relationship between x and y, and graphically estimate
the uncertainties in all the fit parameters.
Plot and fit the data using an appropriate computer program (eg.
CurveFit),and compare with your previous results.
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Chapter 2

The Maxwell Top

2.1 Introduction

In this chapter we want to study some particular cases of rigid body dy-
namics, which have a rotational symmetry around one axis, the so-called
top, or Maxwell top.1

In general, to solve the dynamics of a rigid body we must apply the
second law of dynamics, i.e.

d~L

dt
= ~τ ,

where ~τ is the external torque acting on the body, and ~L is its angular
momentum. For a solid body rotating around one of its axis of symmetry
ẑ (more generally, around any of its three principal axes), with angular
velocity θ̇, ~L is given by2

~L = Iθ̇ẑ, (2.1)

where I is the moment of inertia around the ẑ axis. I is

I =
∫

(x2 + y2)dm,

where x and y are the coordinates of the mass dm. In this particular case,

1The study of the top general equations of motion is quite complicated and is one of
the main topics of a classical mechanics course.

2The dot above the symbol stands for the derivative with respect to the time t. The
number of dots indicates the order of derivation.

13



14 CHAPTER 2. THE MAXWELL TOP

the second law of dynamics assumes the simpler form

Iθ̈ẑ = ~τ .

2.2 Some Relevant Examples

In this section we will study three particular cases of the Maxwell top dy-
namics, which will be used in the laboratory procedures.

2.2.1 Angular Acceleration under a Constant Torque

θ
.

0

O

y

z

x

r F

Center of Mass

Figure 2.1: Top subject to an external force ~F which produces a torque
~τ = rF ẑ.

Let’s consider a top, whose axis of symmetry is vertical, and a force ~F
applied tangent to the top’s surface in the horizontal plane containing the
top’s center of mass (see figure 2.1). If ~F remains constant in modulus and
direction in the reference frame rotating with the top, the second law of
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dynamics assumes a very simple form, i.e.3

Iθ̈ = rF,

where r is the arm lever distance. Integrating the previous equation we
get

θ(t) = θ0 + θ̇0t +
1

2
θ̈0t

2, θ̈0 =
rF

I
. (2.2)

where θ0 is the initial angle, θ̇0 the initial angular velocity, and θ̈0 is the
angular acceleration which is also constant.

2.2.2 Top Suspended with a Torsional Rod

����������������������������������������������������������������
z

θ

Figure 2.2: Top suspended to a torsional rod.

By suspending the top with a torsional rod (see figure 2.2) we will have
a restoring torque (the torsional version of the Hooke’s law) given by the
linear equation

τ = −kθ,

3we are neglecting the energy dissipation mechanisms, which are always present in
any physical system.



16 CHAPTER 2. THE MAXWELL TOP

where θ is the angle in the horizontal plane measured from the equilibrium
position. From the second law of dynamics, we will have

Iθ̈ = −kθ,

which is the equation of an harmonic oscillator, whose general solution is

θ(t) = θ0 cos(ω0t + ϕ0), ω2
0 =

k

I
.

The top will oscillate sinusoidally around the vertical axis with angular
frequency ω0. The constant ω0 is said to be the angular resonant frequency
of the torsional pendulum.

2.2.3 Precession of the Top

xy

z
φ

Mg

Center of Mass

ω

û

O

h

L

CM

τ

Figure 2.3: Precession of the top. In this sketch ~τ is parallel to the y axis
and is pointing to the negative direction of the y axis. The vector ~hCM is in
the plane Oxz

Let’s suppose now that the top has its tip constrained on a horizontal
plane and is rotating around its axis û at a constant angular velocity ωû
(see figure 2.3).
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If the rotation axis makes an angle φ with û axis, the modulus of the
torque ~τ , due to the gravity force M~g, is

τ = |~hCM × M~g| = hCMMg sin φ, (2.3)

where ~hCM is the vector pointing to the top center of mass. Because ~g is
always vertical, ~τ must always lie in the horizontal plane.

Because ωû is parallel to ~hCM at all times ~L is parallel to ~hCM also. It
follows that ~L is perpendicular to ~τ at all times.

For the second law of dynamics and because ~τ is always in the hori-
zontal plane, the variation d~L of the angular momentum must be always
in the horizontal plane. This implies that projection of ~L along the vertical
axis is constant and ~L can only rotate about the vertical axis. As a conse-
quence the component of ~L in the horizontal plane is constant in modulus
but not in direction.

Considering that the projection of ~L in the horizontal plane is L sin φ =

const. , the variation dL of ~L must be (see figure2.4)

dL = L sin φdα,

where dα is the infinitesimal angular variation in the horizontal plane.
Using the second law of dynamics and the previous expression, we get

L sin φ
dα

dt
= τ,

The derivative is indeed the angular velocity Ω of the top around the ver-
tical axis. Combining the previous expression with the (2.3) we get

hCMMg = LΩ.

Substituting the (2.1) into the previous equation (θ̇ = ω) we finally get

Ω =
Mg

Iω
hCM , (2.4)

which shows that Ω does not depend on the angle φ. Ω is said to be the
precession angular frequency and when Ω 6= 0, the top is said to precess
around the vertical axis. It is worthwhile to notice that the angular mo-
mentum modulus |~L| is conserved.
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sinL φ

sinL φ

dL
αd

Figure 2.4: Projection and variation of the angular momentum in the hori-
zontal plane

2.3 Experimental setup.
The Maxwell top is shown schematically in Fig.2.5. The top floats on an air
cushion which creates a thin “air film” (less than 80µm) and considerably
reduces the frictional losses of energy. The two drive jets give the top
a small torque, which can be changed acting on the adjustable exhaust
valve. The sliding mass m changes the position of the top center of mass
along the top axis. Fig.2.5 also shows some details of the air circuit which
sustains the top, and creates a thin air film for friction reduction between
the base and the top.

Some other instruments needed for the two-week experiment are the
following:

• a balance to measure various masses,

• a tachometer to measure the top angular velocity about its axis,

• a ring to increase the top moment of inertia,

• a torsional rod to suspend the top,

• a quasi-frictionless pulley, and a 2g weight to apply a constant torque
to the top.

2.3.1 Care and Use of the Experimental Apparatus
The air bearing is a particularly delicate device because of the the air film
thickness. Any scratch or dirt on the air bearing surfaces can compromise
the use of the experimental apparatus.

These are the precautions that need to be taken:
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Figure 2.5: Maxwell Top schematic vertical cross section and top view
cross section. O is the top’s pivoting point and the sketched axis is ori-
ented as indicated by the arrow. This implies that h0 is negative and h is
positive.



20 CHAPTER 2. THE MAXWELL TOP

• TURN THE AIR SUPPLY TO 26PSI BEFORE ANY OPERATION.

• NEVER LET THE TOP SIT ON THE AIR BEARING BASE WITHOUT AIR
FLOW.

• DO NOT SWITCH TOPS. EACH TOP WORKS PROPERLY WITH JUST ONE
BASE.

• DO NOT LET ANY OBJECT FALL DOWN INTO THE AIR BEARING CUP.

• DO NOT USE CLEAR SCOTCH TAPE TO ATTACH WIRES TO TOP’S CYLIN-
DER. USE SCOTCH MASKING TAPE PROVIDED BY THE LABORATORY.

• ALWAYS REMOVE THE SCOTCH TAPE FROM THE TOP’S CYLINDER
ONCE FINISHED.

• REMEMBER TO CLOSE THE AIR SUPPLY OUTPUT ONCE FINISHED.

2.4 First Laboratory Week
The purpose of the lab is to apply the two methods of measuring the mo-
ment of inertia, based on the theory explained in the previous sections,
and compare and analyze the results.

2.4.1 Indirect Measurement of the Moment of Inertia Ap-
plying a Constant Torque

The top’s moment of inertia I can be indirectly measured if we apply a
known constant torque rF to it, and measure the revolution time of the
top.

In fact, measuring the elapsed time for 1, 2, 3, ..., n revolutions, and fit-
ting the data to the equation (2.2), we can obtain the value of the parameter
θ̈0 and indeed I.

2.4.2 Indirect Measurement of the Moment of Inertia Us-
ing a Torsional Pendulum

Another way to make an indirect measurement of a rigid body moment of
inertia I is measuring the period T of a torsional pendulum, whose bob
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is the rigid body itself. By adding to the bob another rigid body with the
known moment of inertia I0 and re-measuring T , it allows to compute I
without knowing the characteristic of the torsional rod.

In fact, the angular frequencies of the rotation about the axis of sym-
metry for the two cases are

ω2
1 =

k

I
, ω2

2 =
k

I + I0
,

which combined together, and considering that ωi = 2π/Ti, result in

I =
I0

(

T2

T1

)2 − 1
(2.5)

The value of I0can be obtained indirectly by the definition of moment
inertia.

2.4.3 Propaedeutic Problems
1. Derive how the moment of inertia I0 for a ring of inner radius r, outer

radius R, and mass M , is given by

I0 =
1

2
M(R2 + r2) (2.6)

2. If the ring has a mass M = (5.000 ± 0.003)kg, an outer diameter
D = (200.0 ± 0.5)mm, and an inner diameter d = (180.0 ± 0.5)mm,
compute I0 ,σI0and the relative error σI0/I0.

3. The measurement of the oscillation period of a torsional pendulum
with a stopwatch, produces an error due to the experimenter’s reac-
tion time. Assuming that this error is σ = 0.05s, the pendulum pe-
riod is T = 2s, and only one measurement is performed, how many
periods must be measured to get a relative error σT/T of ± 2%, ±
1%, and ± 0.1%?

4. In determining the top’s moment of inertia I with the torsional pen-
dulum, it is found that the oscillation period is T1 = (1.260± 0.003)s,
and with the added ring with moment of inertia I0, is T2 = (1.750 ±
0.002)s. Find the uncertainty in the measurement of I . Use the values
of I0 and σI0given in problem 2.

5. REMEMBER TO CLOSE THE AIR SUPPLY OUTPUT ONCE FINISHED.
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2.4.4 Procedure ( Top’s Moment of Inertia Measurements)
Remember to follow the directives written in section 2.3.1 (Care and Use
of the Experimental Apparatus) before starting the procedure.

1. Determine the top moment of inertia I using the torsional rod as
show in the figure below.������������������������������������������������������������������������������������������������������������������������������������ ���������������������������������������������������������������

 � � � � � � � � � �  � � � � � � � � � �  � � � � � � � � � � 

Ring

Top

Rod

2. Determine the top’s moment of inertia fitting the angular displace-
ment v.s. elapsed time, when the top is under a constant torque. To
realize this condition, attach a string with a 2g weight to the top’s
cylinder, and run the wire over the air pulley, as shown the figure
below.

Top

Base

Exhaust Valve

Weight

Air Pulley

Wire

Wire

Air Pulley

Top

Adjust the exhaust valve to change the air-jets flow until the top
reaches a state closest as possible to the equilibrium. Remove the
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string from to the top and measure the revolution periods. To keep
the torque as constant as possible, never readjust the air pressure. To
obtain a quasi-frictionless pulley, set the air flow of the pulley in such
way the free pulley turns at very low speed. Try to keep the top as
vertical as possible.
Remember to remove the scotch tape from the rim once finished.

3. Compare the two measured values of the moment of inertia I .

4. Compare the value of the angular acceleration θ̈0 obtained from the
fit, with the value obtained from the definition of θ̈0 using the mo-
ment of inertia I calculated in point 1.

2.5 Second Laboratory Week
The purpose of this lab is to verify that the precession angular velocity Ω
is independent of the angle φ and to study the Ω as a function of the top’s
center of mass.

If the center of the sliding mass m is placed at a distance h from the
top’s pivot, and h0 is the position of the top’s center of mass without m,
the new center of mass will be located at (see Fig. 2.5)

hCM =
h0M + hm

M + m
(2.7)

It is important to notice that h0 is negative because it is below the pivot
O, which is the origin of the reference frame chosen to compute hCM . With
the addition of the mass m, equation (2.4) becomes

Ω =
(M + m)ghCM

Iω
, (2.8)

where we have neglected the small increase in the moment of inertia
I due to the mass m. Inserting equation (2.7) into the equation (2.8), and
after some algebra, we obtain

Ω =
Mg

Iω
h0 +

mg

Iω
h. (2.9)

which relates the precession angular velocity to the sliding mass position
h.
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If we impose

h = h∗ = −h0
M

m
, (2.10)

the angular velocity Ω of the precession goes to zero. If the mass m is
placed at h∗, hCM is zero and the torque vanishes, and therefore the top
does not precess.

It is important to notice that the spindle length is such that we can
change the sign of hCM .

2.5.1 Propaedeutic Problems.

1. The position of the top center of mass h0 without the sliding mass
m, is negative (below the pivot point). Provide a sketch depicting
the direction of the angular velocity ω and the direction of the top
precession.

2. Calculate the period of precession T for a top spinning at 5Hz (5
revolutions per second) if m = 0.2186kg, I = 4.66 · 10−2kg m2, and
h = h∗ + 0.01m.

3. Given the sliding mass m = 0.2186kg with its outside diameter D =
0.033m, and inside diameter d = 0.016m, calculate the sliding mass
moment of inertia Im. Is the statement under equation (2.8) justified?

4. A linear fit to Ω versus h gives Ω = a+bh. What are a and b in terms of
m, g, I , ω and h∗? Supposing that ω is constant during each measure-
ment but different every time we change h, how can we rearrange
equation 2.9 to still use a straight line as fitting function ?

5. The precession period T is measured with the sliding mass removed,
and for a given value of the angular velocity ω. Write the equation
that gives h0 in terms of ω, T, M, I and g.
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A

B
A

R B
∆2 l

6. Using two points, A and B, to align the line of sight (see figure above),
a careful student determines that the uncertainty of measuring where
the spindle passes the pointer at A is ∆l = ±2mm. If the radius of
the precession orbit is R = 50mm, and the period is T = 60s, what
uncertainty σT does this produce in the period T ? What fraction is
σT of the total period T ?

2.5.2 Procedure (Precession Period Measurement)

Remember to follow the directives written in section 2.3.1 (Care and Use
of the Experimental Apparatus) before starting the procedure.

Setting the revolution angular velocity ω of the top at around 5Hz make
the following measurements:

1. Without the sliding mass, demonstrate that top precession period T
is independent from the angle φ for constant value of ω.

2. Using the previous measurements of the precession period T , of
the angular revolution frequency ω, and of the moment of inertia
I calculate h∗and its uncertainty . Place the sliding mass at h∗ and
confirm that the top does not precess.
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3. Experimentally study the equation of the precession angular veloc-
ity Ω as a function to the sliding mass position h. Be sure that you
measure the length of the sliding mass.

4. Compare the new measurement of I obtainable from step 3 with the
two ones of the previous week.

5. Calculate the value of h∗ obtainable from step 4 and compare it with
the previous measurement.

6. REMEMBER TO CLOSE THE AIR SUPPLY OUTPUT ONCE FINISHED.



Chapter 3

A Mechanical Oscillator

3.1 Damped Mechanical Oscillator

Consider the mechanical harmonic oscillator sketched in figure 3.1, con-
sisting of a mass attached to two springs, sliding along an air bearing
guide (air trough). The mass contains a permanent magnet whose mag-
netic field closes through the air trough. There will be indeed a viscous
damping force generated by the Eddy currents in the metallic guide. For
our purposes, it is sufficient to consider the following approximations:

• The springs are one-dimensional and ideal (i.e. they are massless,
they obey Hooke’s law along the x direction and they are perfectly
rigid in other directions, they are not dissipative, etc...).

• The only non-negligible mechanism of energy loss is due to the Eddy
current (for example, the air viscosity is negligible compared to the
action of the magnetic force).

Naming the spring constants k1 and k2, x the coordinate of the mass m,
and α the viscous damping coefficient, the equation of motion is

mẍ = −αẋ − k1x − k2x.

Dividing the previous equation by m, rearranging the terms and using
the following definitions

27
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Figure 3.1: Mechanical oscillator sketch

ω2
0 =

k1 + k2

m
, γ =

α

m

we obtain
ẍ + γẋ + ω2

0x = 0, (3.1)

which is the well known equation of motion of a damped harmonic oscil-
lator.

DEF.: Resonant Frequency ν0 of the Undamped Mechanical Oscillator

the quantity ν0 = ω0/2π is said to be the resonant frequency of the undamped
mechanical oscillator.

3.1.1 Step Response
Substituting the trial function1

x(t) = <
[

Xeλt
]

,

into equation (3.1), we get the characteristic polynomial equation for λ

λ2 + γλ + ω2
0 = 0,

1The use of a complex function as trial function is just to facilitate the calculations. The
physical solution must be real and not a complex function. This explains the presence of
the real part symbol <[].
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with roots

λ1,2 = −γ

2
± 1

2

√
∆, ∆ = γ2 − 4ω2

0.

The general solution of the differential equation of motion is indeed

x(t) = <
[

X1e
λ1t + X2e

λ2t
]

,

where X1 and X2 are fixed by the initial conditions at time t0 (i.e. the
position x(t0) and the velocity ẋ(t0)). The behavior of the system depends
on the value of the discriminant ∆.

Over-damped Harmonic Oscillator

In the case that ∆ > 0, we will have

γ > 2ω0 ⇒ x(t) = e−γt/2
(

< [X1] e
√

∆/2t + < [X2] e
−
√

∆/2t
)

.

λ1 and λ2 are real and the amplitude x decays exponentially.

Critically Damped Harmonic Oscillator

If ∆ = 0, we will have

γ = 2ω0 ⇒ x(t) = e−γt/2,

λ1 and λ2 are real and coincident and the amplitude x decays exponen-
tially.

Damped Harmonic Oscillator

For ∆ < 0, we will have

γ < 2ω0 ⇒ x(t) = e−γt/2<
[

X1e
(i
√

|∆|/2)t + X2e
−(i

√
|∆|/2)t

]

.

with λ1and λ2complex and conjugate constants.
Defining the following quantity

ω2
γ = ω2

0 −
γ2

4
,
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extracting the real part, and rearranging the previous equation, we get

x(t) = < [X1 + X2] e
−γt/2 cos(ωγt),

After some tedious algebra, we finally obtain the exponentially decaying
sinusoidal solution

x(t) = x0e
−γt/2 cos(ωγt + ϕ0). (3.2)

The amplitude x0 and the phase ϕ0 are defined by the initial conditions
(see figure 3.2).
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Figure 3.2: Mechanical oscillator ring down. The two exponentially de-
caying curves are the envelope of the ring down. The parameters used are
typical of the real set-up, ω0 = 3.8 rad/s , γ = .17 s−1, x0 = 6.3 mm.
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DEF.:Damped Mechanical Oscillator Resonant Frequency

The constant νγ = ωγ/2π is defined as the resonant frequency of the mechanical
damped oscillator.

DEF.:Mechanical Oscillator Time Constant τ

Defining the following constant as the time constant of the mechanical os-
cillator

τ =
2

γ
,

the previous equation becomes

x(t) = x0e
−t/τ cos(ωγt + ϕ0).

We can see from the previous equation that after a time t = τ the en-
velope maximum amplitude is reduced by a factor 1/e ' 1/2.718, which
means we can easily estimate τ by just measuring the time needed to re-
duce the initial amplitude x0 to about 1/3.

It is worthwhile to notice that the time constant parameter gives a sim-
ple way to characterize the behavior of the oscillator. For example, to char-
acterize the amplitude decay we can consider time intervals multiples of
τ :

Time Initial Amplitude Relative Amp. Respect
(τ ) (x0) to the Initial Amp.(%)

1 ∼ 1/3 37%
3 ' 1/20 5%
5 ∼ 1/150 < 0.6%

A crude estimation of τ can be obtained measuring the period T (or the
resonant frequency νγ), and counting how many periods n∗, the amplitude
takes to decrease to 1/3. The elapsed time will be an estimation of τ , i.e.

τ ' Tn∗ =
n∗

νγ

The uncertainty on the period T , will be about half period T/2.
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DEF.:Mechanical Oscillator Quality Factor Q

Defining the following constant as the quality factor of the mechanical os-
cillator

Q =
ωγ
γ

,

equation (3.2) becomes

x(t) = x0e
−ωγ t/(2Q) cos(ωγt + ϕ0).

Comparing the previous expression with the expression of the time
constant we get

Q =
τωγ
2

= πτνγ ,

which relates the quality factor to the resonant frequency and to the time
constant.

Considering the previous expression, and applying the same method
for estimation of τ , we can get a crude estimation of Q which is

Q ' πn∗.

3.2 A Forced Mechanical Oscillator
In presence of an external force F, the equation of motion for the mechan-
ical oscillator (re-sketched in figure3.3) becomes

mẍ = −mγẋ − k1x − k2x + F.

k2*+*+**+*+*,+,+,,+,+,m
-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
.+.+.+.+.+.+.+.+.+.+.+.+.+.+.+.+.+.+.+..+.+.+.+.+.+.+.+.+.+.+.+.+.+.+.+.+.+.+..+.+.+.+.+.+.+.+.+.+.+.+.+.+.+.+.+.+.+.

O O

F

/+/+/+/+/+/+/+/+/+/+/+/+/+/+/+/+/+/+/+/+/+/+/0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0
x x

k1

0

Figure 3.3: Forced Mechanical Oscillator
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Rearranging the terms of the previous expression, we obtain the usual
form of the equation of motion of the forced oscillator

mẍ + mγẋ + (k1 + k2)x = F. (3.3)

3.2.1 Solution for Sinusoidal Excitations
If we apply a sinusoidal force F , which produces a displacement x0(t) =
X0< [eiωt] through the spring with spring constant k1, we will have

F = k1Xo<
[

eiωt
]

.

Substituting this new expression of F into equation (3.3) we get

mẍ + mγẋ + (k1 + k2)x = k1X0<
[

eiωt
]

. (3.4)

In the steady state regime, because of the linearity of the mechanical
system2, we expect the mass to oscillate at the angular frequency ω of the
driving force, with amplitude and phase to be determined, i.e.

x(t) = <
[

Xeiωt
]

,

where X is a complex number.
Substituting this trial expression for x into equation (3.4), we get

[−mω2 + imωγ + (k1 + k2)]X = k1X0.

Dividing by m and defining the following quantities

ω2
0 =

k1 + k2

m
, ω2

1 =
k1

m
,

we will have
(−ω2 + iγω + ω2

0)X = ω2
1X0,

and finally

x(t) = X0<
[

ω2
1

(ω2
0 − ω2 + iγω)

eiωt
]

,

which is the solution of the equation of motion of the mechanical oscillator
subject to an external sinusoidal force.

2The linearity assures the system response to be proportional to the excitation. In
other words, this implies that the system cannot oscillate at frequencies different from
the excitation frequency.
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Figure 3.4: Amplitude and phase of the transfer function H(ω)of the me-
chanical harmonic oscillator for three different values of γ.

3.2.2 Transfer Function of the Mechanical Oscillator
The following quantity

H(ω) =
Bob-displacement

Actuator-displacement
=

X

X0
,

is the transfer function or transmissibility of the mechanical oscillator. The
system response (the dynamics of the bob) is univocally determined once
its transfer function is known. For example, the response of the system for
a sinusoidal excitation of angular frequency ω is

x(t) = X0<
[

H(ω)eiωt
]

= X0|H(ω)|<
[

ei(ωt+ϕ)
]

= X0|H(ω)| cos(ωt + ϕ).
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Computing the absolute value and the phase of H(ω) we obtain

|H(ω)| =
ω2

1
√

(ω2
0 − ω2)2 + γ2ω2

, (3.5)

arg[H(ω)] = ϕ(ω) = − arctan

(

γω

ω2
0 − ω2

)

(3.6)

At low frequency, the asymptotic behavior is

ω � ω0 ⇒















|H(ω)| ' ω2

1

ω2

0

,

ϕ(ω) ' 0 ,

and at high frequency

ω � ω0 ⇒











|H(ω)| ' ω2

1

ω2 ,

ϕ(ω) ' −π .

The maximum of |H(ω)| is for ω = ωmax, i.e.

ω2
max = ω2

0 −
γ2

2
⇒



















|H(ωmax)| = 1
γ

ω2

1

ωγ

ϕ(ωmax) = − arctan

√

4
ω2

0

γ2 − 2 .

If γ is much smaller than ω0 we have

γ � ω0 ⇒ ϕ(ωmax) ' −π

2
.

3.3 Viscous Damping
The viscous damping of the previous mechanical oscillator can be stud-
ied considering the system without the two springs and with a constant
known force acting on the mass. This constant force can be obtained using
the gravity field, i.e. tilting the air bearing guide (see figure 3.5).

In the steady state regime, the constant force Fg will be balanced by the
friction force Fv produced by the Eddy currents and the mass will travel at



36 CHAPTER 3. A MECHANICAL OSCILLATOR





424242424424242424424242424424242424
525252525525252525525252525525252525

Fg

Fv6262672727

88
88
88
88
8

99
99
99
99
9:2:2:;2;2;

<2<2<2<2<2<<2<2<2<2<2<<2<2<2<2<2<<2<2<2<2<2<<2<2<2<2<2<<2<2<2<2<2<<2<2<2<2<2<<2<2<2<2<2<<2<2<2<2<2<<2<2<2<2<2<<2<2<2<2<2<<2<2<2<2<2<<2<2<2<2<2<

=2=2=2=2==2=2=2=2==2=2=2=2==2=2=2=2==2=2=2=2==2=2=2=2==2=2=2=2==2=2=2=2==2=2=2=2==2=2=2=2==2=2=2=2==2=2=2=2==2=2=2=2=
>2>2>2>2>2>>2>2>2>2>2>>2>2>2>2>2>
?2?2?2?2?2??2?2?2?2?2??2?2?2?2?2?

mg θ

θ

xT

Figure 3.5: Terminal velocity of the mass.

a constant terminal velocity ẋT . Imposing the steady state condition, we
have that the magnitude of the two forces

Fg = mg sin θ, Fν = mγẋT ,

must be equal. This leads to

γ =
g sin θ

ẋT
,

which is the equation that relates the viscous damping coefficient normal-
ized to the mass to the terminal velocity of the mass.

3.4 Effective Mass of a Real Spring

A simple way to take into account the mass M of a spring of length L is
to consider the discrete model shown in figure 3.6. The model is made of
of N point-like masses µ (representing the distributed spring mass) with
coordinates x1, x2, ..., xN connected by N massless springs of rest length l
where

l =
L

N
, µ =

M

N
.

Then, the total kinetic energy associated with the masses will be
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N
2 X(t)

N
1 X(t)

N
3 X(t) X(t)

µ µ µ µ

Figure 3.6: Simple discrete model of a spring.

TN =
N
∑

n=1

1

2
µẋ2

n =
1

2

M

N

N
∑

n=1

ẋ2
n.

Supposing that all the N masses move in the same direction, and each
ideal spring stretches uniformly by the same amount 3, we can write

xn(t) =
n

N
X(t), n = 1, 2, ..., N.

Substituting the previous expression into the kinetic energy we obtain

TN =
1

2
MẊ2 1

N3

N
∑

n=1

n2 =
1

2
MẊ2 N(N + 1)(2N + 1)

6N3
.

Considering that

lim
N→∞

N(N + 1)(2N + 1)

6N3
=

1

3
,

we finally obtain the expression for the kinetic energy of the spring

T∞ =
1

2

M

3
Ẋ2.

The spring contribution to the kinetic energy is equivalent to a rigid body
having a mass equal to 1/3 of the spring mass.

3We are not interested on the internal vibrational modes of the real spring in this very
simple model.
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3.5 Experimental Apparatus
To realize a nearly frictionless mechanical oscillator, the experimental ap-
paratus has a guide, called air trough. The air trough creates a thin “air
film” (less than 80µm) upon which the oscillating mass (the glider) is free
to move in one dimension.

Two helical springs are attached to the glider. One spring is then con-
nected to the edge of the trough, and the other to a motor through and
eccentric pulley to provide a sinusoidal motion.

Eddy current damping is achieved by a permanent magnet placed on
the glider.

Positions of the glider and the actuator are measured using optical po-
sition sensors connected to a data acquisition board (calibration of the po-
sition sensors ∆n

∆s
= 8count/mm with a resolution of ∆n = 1count and the

uncertainty on the time is σt = 0.2ms.).
The slope of the air trough can be set turning a vertical screw placed at

one end of the air trough (leveling screw calibration factor ∆θ
∆s

1mrad/rotation.
Due to local dips and humps, the uncertainty in the angle has been esti-
mated to be σ∆θ = 0.2mrad).

3.5.1 Care and Use of the Experimental Apparatus
The air trough is particularly delicate because of the the air film thickness.
Any scratch or dirt on the glider or on the trough can compromise the use
of the experimental apparatus. These are the precautions that need to be
taken:

1. TURN THE AIR SUPPLY TO 20PSI BEFORE ANY OPERATION.

2. WITH THE AIR SUPPLY ON, CLEAN THE TROUGH WITHOUT THE GLIDER
AND THE SPRINGS WITH PAPER TISSUES MOISTENED WITH ALCO-
HOL.

3. TO REMOVE THE SPRINGS FROM THE GLIDER OR THE GLIDER ITSELF,
LIFT AND HOLD THE GLIDER OUT OF THE AIR TROUGH.

4. DO NOT LET ANY OBJECT FALL DOWN INTO THE TROUGH.

5. REMEBER TO CLOSE THE AIR SUPPLY OUTPUT ONCE FINISHED.



3.6. FIRST LABORATORY WEEK 39

3.6 First Laboratory Week
Sections 3.1, 3.3, and 3.5 must be carefully studied before doing the prepara-
tory problems. Section 3.4 is facultative.

3.6.1 Pre-laboratory Problems
1. Considering that for x(τ)/x0 = 1/e ' 1/3, estimate the time constant

τ from figure 3.2.

2. Determine the units of ω2
0 = (k1 + k2)/m and of γ.

3. Supposing that ω0 = 4 rad/s, calculate for which values of γ, |ωγ −
ω0|/ω0 ≤ 1%.

3.6.2 Procedure
Measure the following physical quantities:

1. Determine the following parameters of the mechanical oscillator by
measuring its damped oscillation: the quality factor Q , the time
constant τ , the viscous damping coefficient γ, and the resonant fre-
quency ωγ .

2. Determine the viscous damping γ coefficient by measuring the ter-
minal velocity ẋT .

3. measuring the two spring constant k1, k2, and the glider mass m de-
termine ω0 . Using the previous measurement of γ and this new
value of ω0, calculate the resonant frequency ωγ .

4. REMEBER TO CLOSE THE AIR SUPPLY OUTPUT ONCE FINISHED.

The following measurements are facultative:

• Determination of the energy percentage ∆E(T )
∆E(0)

dissipated per cycle T

by the mechanical oscillator.

• Measurement of the quality factor Q as a function of the permanent
magnet position.
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• Calibration of the position sensors.

• Calibration of the leveling screw.

3.7 Second Laboratory Week
Sections 3.2, and 3.5 must be carefully studied before doing the prepara-
tory problems

3.7.1 Pre-laboratory Problems
1. Does the sinusoidal force F necessary to drive the mechanical oscil-

lator at a fixed amplitude x depend on frequency? Prove it.

2. Considering the following parameters for the mechanical oscillator,
m = 0.6kg ωγ = 3.8rad/s, γ = 0.17s−1, compute the force necessary
to move the glider by 1mm (static regime).

3. Redo the previous calculation in the case of a sinusoidal force with
angular frequency ω = ωmax (dynamic regime).

4. Linearize the phase of the transfer function ϕ(ω) to obtain ω0, and γ
from a linear fit (hint: if y = ax + b then x = ω/ tanϕ, and y = ω2).

5. Because of the linearity of the system, the solution of the mechanical
oscillator subject to a sinusoidal force and a step response is

x(t) = x0e
−γt/2 cos(ωγt + ϕ0) + |H(ω)|X0 cos[ωt + ϕ(ω)].

Supposing that for a given frequency |H(ω)|X0 = x0 and γ = 0.15s−1,
calculate the time τ∗ necessary for the step response to contribute by
1% on the amplitude of the oscillation.

3.7.2 Procedure
Measure the following physical quantities:

1. Measure and plot it using the appropriate scales, the transfer func-
tion |H(ω)|, arg(H(ω)) of the forced mechanical oscillator.
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2. Determine from the magnitude of the transfer function γ, ω0, and the
maximum of |H(ω)|.

3. Determine ωγ using the previous measurements.

4. Determine the angular frequency ω0 and viscous damping coefficient
γ from the transfer function phase arg(H(ω)).

5. Compare all the new measurements of γ with those ones of the pre-
vious week.

6. REMEBER TO CLOSE THE AIR SUPPLY OUTPUT ONCE FINISHED.
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Chapter 4

The Inverted Pendulum (IP)

4.1 Introduction

The inverted pendulum (shortly IP) is a mechanical harmonic oscillator
whose peculiarity is to make possible to obtain a very low resonant fre-
quency in the horizontal direction. In fact, using the restoring torque of a
flex joint, to balance the torque due to the gravity force (see figure 4.1), an
inverted pendulum with a leg of 1m can be tuned to reach a resonant fre-
quency below 100mHz. A similar device using a simple pendulum with
the same characteristics would be quite impractical.

4.2 A Simple Model

To understand the dynamics of the inverted pendulum, we will consider a
simplified model with the following definitions and approximations (see
figure 4.1):

• a massless leg of length l,

• a mass M all concentrated in one point,

• dynamics completely described by one angular coordinate, i.e. the
angle θ between the vertical axis and leg axis,

43
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• flex joint length negligible making a force described by the Hooke’s
law with an equivalent of a spring constant k

F = −kx = −klθ.

• no energy dissipation mechanisms.
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Figure 4.1: Simple model of the inverted pendulum.

4.2.1 The Equation of Motion

Considering this simplified model of the inverted pendulum in the har-
monic oscillation regime ( θ � 1), the equation of motion is

Mlθ̈ = −klθ + Mgθ, θ � 1.



4.3. A BETTER MODEL OF THE INVERTED PENDULUM 45

Rearranging the previous equation, we get

θ̈ + ω2
0θ = 0, ω2

0 =
k

M
− g

l
, (4.1)

which is the linear differential equation of an harmonic oscillator with an-
gular resonant frequency ω0, whose general solution is

θ(t) = θ0 cos(ω0t + ϕ0).

As usual, the constants θ0 and ϕ0 depend on the initial conditions at
t = 0.

4.3 A Better Model of the Inverted Pendulum

One simple improvement of the previous inverted pendulum model is to
consider the mass m and the moment of inertia I about the axis Ox̂ of the
leg. Using the second law of dynamics we have1

(I + Ml2)θ̈ = −kl2θ + Mglθ + mgdθ. (4.2)

where d is the leg´s center of mass distance from the pivot point O. The
solution is the same as the previous equation (4.1) with the difference that
the angular resonant frequency is now

ω2
1 =

kl2 − (Ml + md)g

I + Ml2
. (4.3)

In case of a cylindrical tube of negligible wall thickness, outer radius r
length H and mass m, the leg´s moment of inertia about the pivot point O
is

I = I0 + md2, I0 =
1

2
m

(

H2

6
+ r2

)2

.

1Because we are still considering the mass M a point like mass, its moment of inertia
is its mass M times the square of the arm lever l.
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4.4 Energy Dissipation Mechanisms
Another step to improve our model is to include the mechanical energy
dissipation which is always present in any physical system. Essentially,
There are two major dissipation mechanisms, the so called structural, and
viscous damping, and their net effect is to damp the motion.

The viscous damping can be described as friction between the mechan-
ical system and the viscous medium, (the air in our case) where the system
moves through. For an inverted pendulum in air, it becomes dominant
with respect to other dissipation mechanisms at velocities higher than the
typical resonances.

For structural damping case, the mechanical energy loss is due to the
non perfectly elastic materials. In other words, when those materials are
are bent, compressed or stretched the energy stored into them is dissipated
as heat, and it is not returned to the mechanical system2.

Experimentally, the structural damping produces a sinusoidal motion,
which decays exponentially. In this case, a way “ad hoc” of taking into
account the structural damping is to rewrite the equation of motion with
a complex spring constant k

k ⇒ k(1 + iφ) ,

where φ is said to be the loss angle.
Equation (4.2) becomes3

(I + Ml2)θ̈ + [k(1 + iφ)l2 − Mgl − mgd] θ = 0 . (4.4)

Defining the following quantity

ω2
2 =

kl2

I + Ml2
,

and rearranging equation 4.4, we get

θ̈ +
(

ω2
1 + iφω2

2

)

θ = 0,

2“Thermodynamically speaking” it means that there are some irreversible processes.
3It is important to notice that because of the presence of the imaginary term equation

(4.4) does not have a physical meaning anymore.
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and the solution of this equation becomes

θ(t) = θ0e
−φω2t cos(ω1t + ϕ0), (4.5)

which is an exponentially decaying sinusoid with the angular resonant
frequency independent from the dissipation mechanism.

The inverse of the loss angle Q = 1/φ is the quality factor or merit factor
of the oscillator. The iφ term introduced in the equation of motion is indeed
just an artifact to obtain the right solution.

4.5 Forced Oscillator (Sinusoidal Excitation Re-
sponse)

Introducing a new coordinate system, the displacement of the mass M
along the x axis equation (4.5) becomes

ẍ +
(

ω2
0 + iφω2

2

)

x = 0, x = θl. (4.6)

If we excite the IP clamping point with a force, which produces a dis-
placement x0, then the new position x of the mass M is

x ⇒ x − x0.

Using the previous transformations, equation (4.6) becomes

ẍ +
(

ω2
0 + iφω2

2

)

(x − x0) = 0 .

Collecting x0 on the right-hand side we get

ẍ + (ω2
0 + iφω2

2)x = (ω2
0 + iφω2

2)x0.

For a sinusoidal excitation x0(t) = X0< [eiωt]4, the solution of the pre-
vious equation must be in the form x(t) = < [Xeiωt], with X as a complex
unknown amplitude independent from time t. Substituting these func-
tions into the previous equation, we get

−ωX + (ω2
0 + iφω2

2)X = (ω2
0 + iφω2

2)X0.

4<[...] means the real part of what is in the square brackets.
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and finally

X =
ω2

0 + iφω2
2

ω2
0 − ω2 + iφω2

2

X0.

The solution of the inverted pendulum subject to a sinusoidal excita-
tion with angular frequency ω on the clamping point is indeed

x(ω, t) = <
[

ω2
0 + iφω2

2

ω2
0 − ω2 + iφω2

2

X0e
iωt

]

.

4.5.1 The Inverted Pendulum Transfer Function
The following expression

H(ω) =
X

X0
,

is defined the transfer function of the system (or the transmissibility for
mechanical systems). The knowledge of the transfer function determines
univocally the behavior of a linear system. Knowing the amplitude of the
input X0 for each frequency we can compute the output by multiplying it
by the function H(ω).

For the inverted pendulum we will have

|H(ω)|2 =
ω4

0 + φ2ω4
2

(ω2
0 − ω2)2 + φ2ω4

2

arg[H(ω)] = ϕ(ω) = − arctan

(

φω2
2ω

2

ω4
0 − ω2

0ω
2 + φ2ω4

2

)

The phase qualitative behavior can be understood considering φ � 1,
which implies that φ2 ' 0, Computing the phase for the following angular
frequency values

ω � ω0 ⇒ ϕ(ω) ' 0,

ω = ω0 ⇒ ϕ(ω) ' −90o,

ω � ω0 ⇒ ϕ(ω) ' −180o

For the magnitude it is easy to see that for

ω � ω0, ⇒ |H(ω)| = 1,



4.6. THE INVERTED PENDULUM TEST BENCH 49

ω = ω0, ⇒ |H(ω0)|2 = 1 +

(

ω2
0

ω2
2φ

)2

,

ω � ω0, ⇒ |H(ω)| ' ω2
0 + φω4

2

ω2

With the energy dissipation the qualitative behavior changes essen-
tially around the resonance ω0, where |H(ω)| does not diverge anymore.
Figure ?? shows the transfer function in a logarithmic scale for the angu-
lar frequency and for the amplitude|H(ω)|.

4.6 The Inverted Pendulum Test Bench

Figure 4.6 shows a schematic of the inverted pendulum test bench. The
device is essentially made of 6 mechanical functional parts:

1. the base, to support the mechanical system, with three leveling thumb
screws,

2. the actuator, a platform suspended to the a little table by four shims
0.3mm thick, 4.76mm wide, and 75mm long, clamped to the platform
and to the table,

3. the aluminum leg, essentially a light hollow cylinder,

4. the flex joint, 16mm long and 2mm,5

5. the threaded rod, to symmetrically load the IP.

6. A stage on the side of the inverted pendulum leg, to mount the IP
travel limiter, an support the velocity sensor.

An electro-magnetic actuator is mounted between the base and the actua-
tor platform to excite the IP. One velocity sensors is placed close as possi-
ble to the IP load to measure the velocity of the IP’s top. Another velocity
sensor mounted on the base measures the actuator platform’s velocity.

5The flex joint is machined from a steel square beam
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4.7 First Laboratory Week

4.7.1 Preparatory Laboratory Problems

1. Rewrite equation (4.3) considering the parameter angular stiffness
κ = k/l . What are the units of κ?

2. Determine the length of an IP leg with a load of M = 0.300kg, flex
joint flexural angular stiffness κ = 10N/m2, resonant frequency ν0 =
100mHz, and negligible leg´s mass m. Compute the length of the
equivalent simple pendulum (i.e. having the same resonant frequency).

3. Compute the force needed to hold the load´s M center of mass 5mm
far from the equilibrium position for the IP of problem 2.

4. Calculate the mass variation ∆M needed to change the frequency
from 100mHz to 10mHz for the IP of problem 2.

5. Consider the IP of problem 2 which is ringing down after a step ex-
citation. Supposing that the loss angle is φ = 10−2, and the leg´s
moment of inertia is I = 3.2 · 10−3kgm2, compute the time necessary
to have the IP oscillation amplitude 1% of the initial value x0.

6. Rewrite the moment of inertia expression I using the parameters h,
and l as shown below

2r0

E�E�E�E�E�EE�E�E�E�E�EE�E�E�E�E�EE�E�E�E�E�EE�E�E�E�E�EE�E�E�E�E�EE�E�E�E�E�EE�E�E�E�E�EE�E�E�E�E�EE�E�E�E�E�EE�E�E�E�E�EE�E�E�E�E�EE�E�E�E�E�EE�E�E�E�E�EE�E�E�E�E�EE�E�E�E�E�E

F�F�F�F�F�FF�F�F�F�F�FF�F�F�F�F�FF�F�F�F�F�FF�F�F�F�F�FF�F�F�F�F�FF�F�F�F�F�FF�F�F�F�F�FF�F�F�F�F�FF�F�F�F�F�FF�F�F�F�F�FF�F�F�F�F�FF�F�F�F�F�FF�F�F�F�F�FF�F�F�F�F�FF�F�F�F�F�F

H

l

Flex joint

h

Leg

d
Leg’s center of mass

Compute the leg’s moment of inertia I with m = 25mg, l = 650mm,
h = 28mm , and r0 = 5mm, and the systematic error on I if we
neglect the leg´s radius.
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4.7.2 Care and Use of the Experimental Apparatus
The flexural joint is particularly delicate because of its small stiffness. Large
angles can make the joint working in the plastic regime causing an irre-
versible damage.

These are the main precautions that need to be taken:

1. NEVER LET THE IP OSCILLATE WITHOUT THE TRAVEL LIMITER.

2. DO NOT LET THE IP LEG FALL.

3. TO DISASSEMBLE THE IP LEG, LOCK THE ACTUATOR PLATFORM, RE-
MOVE THE LOAD FROM THE LOAD PLATE AND INSERT THE PROPER
WRENCH KEY IN THE LOWER PART OF THE FLEXURAL JOINT TO AVOID
THAT A TORQUE IS DIRECTLY APPLIED TO THE JOINT.

4.7.3 Procedure
Read this text down to the end before starting your laboratory work, and
remember to specify in your report which set-up you used.

All the measurement must be performed with the actuator platform
locked with the thumb screws to the IP base.

The practical difficulty of this experiment is to achieve the IP equilib-
rium position for each different load. The lower the resonant frequency
the more sensitive is the IP to a load displacement.

To keep the IP in equilibrium, coarsely level the leg’s top using the
bubble level, and acting on the three leveling screws.

The previous procedure assures that the IP equilibrium position is not
too far from the vertical axis going through the center of the travel limiter,
but it doesn’t assure that at the equilibrium the IP leg axis will coincide to
this axis. Moreover, if we add a new weight on the load plate the equilib-
rium position will change.

When a new mass placed on the load plate makes the IP touching the
travel limiter re-level the IP acting on the leveling screws. Alternatively,
walk a small weight around on the load to bring the IP back to the equi-
librium.

When the resonant frequency is below 200mHz, the hysteresis becomes
not negligible anymore, and strong and sudden perturbation can bring the
IP far from the previous equilibrium position.
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4.7.4 Inverted Pendulum Leg

Leg´s dimension are sketched the figure below

2r0

h H

l

Flex joint Load deviceArrow shaft

The load device is designed to place the load symmetrically respect the
point A keeping the length of the leg l constant.

Use the spare leg, the dummy flex joint, and the load device to do the
measurements of l, H , and h.

Resonant Frequency vs Load Measurement

• Experimentally, study the variation of the IP resonant frequency ν0

as a function of the load M placed on top of the IP. The measurement
of ν0 can be indirectly done measuring severals oscillation periods T
and using the provide data acquisition system.

• Determine the flex joint angular stiffness κ = k/l fitting equation 4.3.

Inverted Pendulum Loss Angle

• Using the IP ring-down amplitude envelope, determine the loss an-
gle φ of the IP with no load, with an intermediate load M, and the
with a load as close as possible to maximum load you placed on the
IP.

To record the amplitude of the ring-down of the amplitude, use the ve-
locity sensor placed closed to the load and the available data acquisition
system.
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4.8 Second Laboratory Week

4.8.1 Preparatory Laboratory Problems

1. Demonstrate that H(ω) = Ẋ
Ẋ0

, i.e. we can measure the transmissibil-
ity of the IP measuring the velocity of the Load Ẋ and the velocity of
the actuator platform Ẋ0.

2. Consider IP of problem 2 of the previous week with loss angle φ =
10−3, and resonant frequency ν0 = 100mHz. Driving the load´s cen-
ter of mass at the resonant frequency ν0, compute the force needed
to make the IP load´s center of mass oscillate with an amplitude of
5mm.

3. Repeat the same calculation of problem 2 supposing no dissipation
φ = 0.

4. Repeat the same calculation of problem 2 for a driving frequency
ν = 100Hz.

5. Supposing that the actuator force F is proportional to the current i ,
i.e F = αi, α = 0.25N/A, compute the current necessary to move the
IP load of problem 2 by 5mm at the resonance ν0 and at 100Hz.

4.8.2 Procedure
Read this text up to the end before staring your laboratory work, and re-
member to specify in your report which set-up you used.

All the measurement must be performed with the actuator platform
unlocked.

IP Transmissibility

• Measure the transmissibility of the IP using the two velocity sensors,
and the same load M0 used before.

• Try to repeat the previous measurement with the load Mmax.

• Compare the two set of measurement of the loss angle at the resonant
frequency.
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Figure 4.2: Inverted pendulum test bench .



Chapter 5

Direct Current Network Theory

5.1 Electronic Networks

An electronic network or circuit is a set of electronic components/devices
connected together to modify and transmit/transfer energy/information.
This information is generally called electric signal or simply signal. To
graphically represent a network, we use a set of coded symbols with termi-
nals for devices and lines for connections. These lines propagate the signal
among the devices without changing it. Devices change the propagation
of the electric signals instead.

Quantities defining this propagation are the voltages V across the de-
vices and currents I flowing through them.

Solving an electronic network means determine the currents or the
voltages on each point of it.

To make the understanding of network basic theorems easier, some
more or less intuitive definitions must be stated.

5.1.1 Network Definitions

A network node is a point where more than two network lines connect.
A network loop, or mesh, is any closed network line. To determine a mesh

it is sufficient to start from any point of the circuit and come back running
through the network to the same point without passing through a same
point.

Figure 5.1 shows a generic portion of a network with 4 visible nodes,

55
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Figure 5.1: Generic representation of a network

and 3 visible meshes. The empty boxes are the electronic components of
the network. The electronic components are points of the network.

5.1.2 Series and Parallel

Let’s consider the two different connection topologies shown in figure 5.2,
the parallel and the series connections.

A set of components is said to be in series if the current flowing through
them and anywhere in the circuit is the same .

A set of components is said to be in parallel if the voltage difference
between them is the same.

B 

A

A B 

Figure 5.2: Considering the points A, and B, the components of the left
circuit are in parallel, and those ones in the right circuit are in series.
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A B

I

R

V

Figure 5.3: Resistor symbol

5.1.3 Active and Passive Components

Circuit components can be divided into two categories: active and passive
components. Active components are those devices that feed energy into
the network. Voltage and current sources are active components. Ampli-
fiers are also considered active components.

Passive components are those components that do not feed energy to
the network. Resistors, capacitors, inductors are typical passive compo-
nents.

In general, both active and passive components dissipate energy.

5.2 Kirchhoff’s Laws

In this section the two Kirchhoff’s laws, which are fundamental for the
solution of an electronic circuit are stated here.
Kirchhoff’s Voltage Law (KVL):The algebraic sum of the voltage differ-
ence vk around a mesh must be equal to zero at all times, i.e.

∑

k

v(t) = 0

Kirchhoff’s Current Law(KCL):The algebraic sum of the currents ik enter-
ing and leaving a node must be equal to zero at all times, i.e.

∑

k

ik(t) = 0.
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5.3 Resistors (Ohm’s Law)
It is experimentally known that if we apply a voltage V across a metal (a
conductor), we will measure an electric current I flowing through it. V
results to be proportional to I by a constant R, named electric resistance of
the conductor. In other terms we have

V

I
= R, (5.1)

which is called Ohm’s law. The unit for the resistance is the “Ohm” whose
symbol is the Greek letter Ω. It follows from Ohm’s law that [Ω] = [V/A]=“Volt
per Ampere”.

In a metallic conductor, R is proportional to the conductor length l and
inversely proportional to the cross-section s, i.e.

R = ρ
l

s
.

ρ is the conductor resistivity and it depends on the metal and its impu-
rities. A device which follows Ohm’s Law is said to be a resistor and its
symbol is shown in figure 5.3.

The power P dissipated by the resistor with resistance R is

P = V I, ⇒ P =
V 2

R
= RI2.

Let’s define some properties of the resistance of conductors.

5.3.1 Resistors in Series
The resistance Rtot of a set of resistor R1,R2, . . . , Rn, connected in series
(see figure 5.4), is equal to the sum of the resistances

Rtot =
n
∑

k=1

Rk.

The previous formula is easy to demonstrate. Connecting the resistor
series to a voltage source V , and applying the (5.1) to each resistors we
have

V1 = R1I, V2 = R2I, ... Vn = RnI,
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R1 R2

V1 V2 Vn

Vtot

R tot

I I I

Rn

Figure 5.4: Resistor in series

where I is the current flowing through each resistor. Because of the KVL,
the voltage difference V must be the sum of all the voltages differences,
i.e.

V =
n
∑

k=1

RkI =

(

n
∑

k=1

Rk

)

I.

5.3.2 Resistors in Parallel

The inverse of the resistance Rtot of a set of resistor R1,R2, . . . , Rn, con-
nected in parallel (see figure 5.5), is equal to the sum of the inverse of the
resistances

1

Rtot
=

n
∑

k=1

1

Rk
.

This law can be easily derived using (5.1) and the definition of compo-
nents in parallel.

5.4 Capacitors

Let’s study another typical component of an electronic circuit, the capac-
itor. A capacitor is a system of two conductors which goes under full in-
duction when a voltage difference is applied to the conductors. Each con-
ductor will be charged with the same amount of charge Q with opposite
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V RnR1 R2 Rtot1 2 n
I I I

totI

Figure 5.5: Resistors in parallel.

A B

I

V
C

Figure 5.6: Capacitor symbol.

sign. The ratio between the voltage difference V between the two conduc-
tors and the charge Q

C =
Q

V
(5.2)

is constant and is said to be the capacitance C of the capacitor. The capac-
itance depends on the geometry of the conductors and on the interposed
dielectric. The units for the capacitance is the “Faraday’ whose symbol is
the letter F. It follows that [F] = [C/V]=“Coulomb per Volt”.

5.4.1 Capacitors in Parallel

A parallel of capacitors C1, C2, ..., Cn is a capacitor whose capacitance Ctot

is the sum of all the capacitances, i.e.

Ctot =
n
∑

k=1

Ck. (5.3)
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V C1 C2 totnC C

Figure 5.7: Capacitors in parallel.

The previous formula is easy to demonstrate. In fact, the total induced
charge Qtot on the capacitors side at the same potential is equal to the sum
of all charges of those sides, i.e.

Qtot =
n
∑

k=1

Qk.

Considering that the voltage difference V across each capacitor must be
same, and dividing by V we obtain the (5.3).

5.4.2 Capacitors in Series
A series of capacitors C1, C2, ..., Cnis a capacitor with capacitance Ctot sat-
isfying the following equation

V1 V2 Vn

Vtot

C2C1

Ctot

Cn

Figure 5.8: Capacitors in series.
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1

Ctot
=

n
∑

k=1

1

Ck
.

The demonstration of the previous equation is left as exercise (hint: in
this case the induced charges are equal and not the voltage differences
across the capacitors).

5.5 Ideal and Real Sources

5.5.1 Ideal Voltage Source

An ideal voltage source is a source able to deliver a given Voltage differ-
ence Vs between its leads independently of the load R attached to it (see
figure 5.9). It follows from Ohm’s law that a voltage source is able to pro-
duce any current I to keep constant the voltage difference Vs across the
load R. The symbol for the ideal voltage source is shown in figure 5.9.

Quite often, a real voltage source exhibits a linear dependency on the
resistive load R. It can be represented using an ideal voltage source Vs in
series with a resistor Rs called input resistance of the source. Applying
Ohm’s law, it can be easily shown that the voltage and current through
the load R are

V =
R

R + Rs
Vs, I =

Vs
R + Rs

.

If we assume

R � Rs, ⇒ V ' Vs, I ' Vs
R

.

Under the previous condition, the real voltage source approximates the
ideal case.

5.5.2 Ideal Current Source

An ideal current source is a source able to deliver a given current Is which
does not depend on the load R attached to it (see figure 5.10). It follows
from Ohm’s law that an ideal current source is able to produce any voltage
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sV sV

+

−

VRI

V

I

Figure 5.9: Ideal voltage source.

difference V across the load R to keep Is constant. The symbol for the ideal
current source is shown in figure 5.10.

A real current source exhibits a dependency on the resistive load R,
which can be represented using an ideal current source Is in parallel with
a resistor Rs. Applying Ohm’s law and the KCL, it can be easily shown
that the voltage and current through the load R are

I =
Rs

R + Rs
Is, V =

RsR

Rs + R
Is.

If we suppose

Rs � R, ⇒ I ' Is, V ' RIs � 0

Under the previous condition, the real current source approximates the
ideal case.

sVIs

Is

VRI

V

I

Figure 5.10: Ideal current source.
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5.6 The Semiconductor Junction (Diode)
The semiconductor junction or semiconductor diode is a device which presents
a non-linear behavior due to its peculiar conduction mechanism substan-
tially different from the conduction in a metal.

If ID and VD are the current and the voltage difference across the junc-
tion, we will have

ID(VD) = I0(e
−qVD
ηkBT − 1), (5.4)

where kB = 1.3807 · 10−23J/K is the Boltzmann constant, T the absolute
temperature, q = −1.60219 · 10−19C the electron charge, and η a dimen-
sionless parameter, which depends on the diode type. I0 is the reverse
saturation current.

Instead of following Ohm’s law, the semiconductor junction follows an
exponential curve (the diode I-V Characteristic). Deviations from this law
are negligible depending on the current magnitude and the diode charac-
teristics.

Figure 5.11 shows the standard symbol for a semiconductor diode and
the I-V characteristic. The break-down voltage Vb reported in the same
figure is the reverse voltage which essentially shorts circuit the junction.
This behavior is not accounted by the equation (5.4).

Vb

Von

ID

I0 DV

DV

A

B

ID

0

Figure 5.11: Diode characteristic (continuous curve), simplified diode
characteristic (dashed curve), and diode standard symbol.

A simplified model of the junction diode is that one of a perfect switch,
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i.e.

ID(V ) =

{

∞ V ≥ Von
0 V < Von

,

where Von is the diode turn-on voltage, which depends on the junction type
and on the current magnitude. For current up to ID ∼ 100mA, silicon
diodes have Von ' 0.6V, and germanium diodes have Von ' 0.3V .

For voltages greater than Von, the diode is a short circuit (current is not
limited by the diode) and is said to be forward biased. For smaller values it
is an open circuit (current across the diode is zero ) and is reverse biased.

5.7 Equivalent Networks

Quite often, the analysis of a network becomes easier by replacing part of
it with an equivalent and simpler network or dividing it into simpler sub-
networks. For example, the voltage divider is an equation easy to remem-
ber that allows to divide a complex circuit in two parts simplifying the
search of the solution. Thévenin and Norton theorems, give us two meth-
ods to calculate equivalent simple circuits, which behave like the original
circuit seen from two points of it. These techniques briefly explained in
this section, will be used also in some of the next experiments.

5.7.1 Voltage Divider

The voltage divider equation is applicable every time we have a circuit
which can be re-conducted in a series of two simple or complex compo-
nents. The simplest case is the one shown in figure 5.12. Applying Ohm’s
law, we have

VTot = (R1 + R2)I

V2 = R2I

and indeed
V2 =

R2

R1 + R2

VTot,

which is the equation of the voltage divider. The equation still holds if we
replace the resistance seen from the points A, B for R1and B,C for R2.
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Complex
Circuit

Complex
Circuit

V2

VTot

R1

R2

V2

VTot

I

A

B

C

A

B

C

Figure 5.12: Simplest and complex voltage divider circuit.

5.7.2 Thévenin Theorem
Thévenin theorem allows to find an equivalent circuit of a network seen
from two points A and B using the series of an ideal voltage source of
voltage VTh and a resistor with resistance RTh.

RL RL
V

R

Th

Th

Black Box
+

−

B

A

B

A

Figure 5.13: Thévenin equivalent circuit illustration.

The equivalence means that if we place a load RL between A and B in
the original circuit (see figure 5.13) and measure the voltage VL and the
current IL across the load, we will obtain exactly the same VL and IL if
RLis placed in the equivalent circuit. This must be true for any load we
connect to the points A and B .

The previous statement and the linearity of the circuit can be used to
find VTh and RTh. In fact, if we consider RL = ∞ (open circuit, OC), we
will have

VTh = VOC .
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The Voltage VTh is just the voltage difference between the two leads A
and B.

For RL = 0 (short circuit, SC) we must have

ISC =
VTh
RTh

=
VOC
RTh

.

and therefore
RTh =

VOC
ISC

.

The last expression says that the Thévenin resistance is the resistance
seen from the points A and B of the original circuit.

If the circuit is known the Thévenin parameter can be calculated in
the case of the terminals A and B open. In fact, VTh is just the voltage
across A and B of a known circuit. Replacing the ideal voltage sources
with short circuits (their resistance is zero) and ideal current sources with
open circuits ( their resistance is infinite) we can calculate the resistance
RTh seen from terminals A and B.

Example:
We want to find the Thévenin circuit of the network enclosed into the gray
rectangle of figure 5.14. To find RTh, and VTh we have to disconnect the
circuit in the points A and B. In this case voltage difference between these
two points, thanks to the voltage divider equation, is

VTh =
R1

R1 + R2
Vs.

Short circuiting Vs we will have R1 in parallel with R2. The Thévenin
resistance RTh will be indeed

RTh =
R1R2

R1 + R2

.

Considering the previous results, we can finally state Thévenin theo-
rem as follows:

Any circuit seen from two points can be replaced by a series of an ideal voltage
source of voltage VTh and a resistor of resistance RTh. VTh is the voltage difference
between the two point of the original circuit. RTh is the resistance seen from these
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two points, short-circuiting all the ideal voltages generators and open-circuiting
all the ideal current generators.

Vs
+

−
V0

R1

R Th

VTh

R2

R0R0

V0

+

−

A

B

A

B

+

−
+

−

Figure 5.14: Thévenin equivalent circuit example

RLRNoBlack Box RL INo

Figure 5.15: Norton equivalent circuit illustration.

5.7.3 Norton Theorem

Any kind of active network seen from two points A and B can by replaced by an
ideal current generator INo in parallel with a resistance RNo. The current INo
correspond to the short-circuit current of the two points A and B. The Resistance
RNo is the Thévenin resistance RNo = RTh .

The proof of this theorem is left as exercise.
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5.8 Resistor Color Code

Nominal values of resistances are coded using colors bands around the
resistors (see figure below). The bands identify digits and the exponent
in base ten for the resistance value and the tolerance as explained in the
following table:

Band 1 2 3 4 5
Number (Tolerance band)
3 Bands Digit Digit Exponent Always 20%
4 Bands Digit Digit Exponent Tolerance
5 Bands Digit Digit Exponent Tolerance Tolerance after

1000 hours

3 Band resistors have no band for the tolerance because it is assumed to
be 20% of the nominal values.The fifth band is not an industry standard,
but quite often it means the tolerance after 1000 hours of continuous use.

A B C D

R = AB · 10C, ∆R = R · D

The bands are counted from left right. The following table reports the
coding of the values using colors and a mnemonic sentence to remember
the color code table.
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Color Exponent Tolerance(%) Tolerance (%) 5th Band
Big Black 0 20
Bart Brown 1 1 1%
Rides Red 2 2 0.1%
Over Orange 3 0.01%
Your Yellow 4 0.001%
Grave Green 5
Blasting Blue 6
Violent Violet 7
Guns Gray 8
Wildly. White 9
Go Gold -1 5
Shoot (him?) Silver -2 10

For example, the nominal resistance of a 4 band resistor having the
sequence brown, black, orange and gold is

Rnom. = 10kΩ
⇒ Rnom. = (10.0 ± 0.5)kΩ

∆Rnom. = 5%10kΩ

Resistor size (volume) is related to the power dissipation capability. Typi-
cal used values are 1/4W 1/2W, 1W.
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5.9 First Laboratory Week

Sections 1, 2, 3, 5, and 7 of this chapter are required to complete the first
laboratory week. A particular attention deserves the Thévenin equivalent
circuit, which is the main topic of the experiment.

To experimentally study the basics of electronic networks, which is the
scope of this laboratory week, we will use the following instruments:

• a digital multimeter (DMM) to measure voltage differences, currents,
resistances

• a data acquisition system (DAQ),

• a voltage source.

Whenever you work with electronic circuits as a beginner (all ph3 students
are considered beginners it doesn’t matter which personal skills they al-
ready have), some extra precautions must be taken to avoid injuries. These
are the main ones:

• NEVER CONNECT INSTRUMENT PROBES OR LEADS TO THE POWER
LINE OR TO AN OUTLET.

• DO NOT TRY TO FIX/IMPROVE AN INSTRUMENT BY YOURSELF.

• DO NOT POWER UP AN INSTRUMENT WHICH IS NOT WORKING OR
DISASSEMBLED.

• DO NOT TOUCH A DISASSEMBLED OR PARTIALLY DISASSEMBLED IN-
STRUMENT EVEN IF IT IS NOT POWERED.

• WEAR PROTECTIVE GOGGLES EVERY TIME YOU USE A SOLDERING
IRON.

• TO AVOID EXPLOSIONS, NEVER USE A SOLDERING IRON ON A POW-
ERED CIRCUIT AND BATTERIES.

• PLACE A FAN TO DISPERSE SOLDER VAPORS FOR LONG PERIOD OF
SOLDERING WORK.
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5.9.1 Pre-Laboratory Problems
1. Find the current I in the circuit shown below and confirm the two

Kirchhoff’s Laws

4R

R2 =2kΩ

3R =1kΩ

0V =5V

1R

I

=10kΩ

1k=

+

Ω

2. Find the equivalent Thévenin circuit for the following circuit respect
to the point A and B :

0R =1.0kΩ

2R =4.7kΩ3R =2.2kΩ
I

+

1R =1.5kΩ0V =5V

A

B

3. A voltage generator with voltage V0 = 10V and internal resistance
R0 = 10Ω can deliver a maximum current I0 = 50mA. Using a series
of 4 resistors, we want to produce the voltage differences V1 = 9V,
V2 = 5V and V3 = 3V measured from the negative pole of the gen-
erator and using the maximum deliverable current. Calculate the
resistances of the 4 resistors.

4. A DAQ system uses a 10bit Analog to Digital Converter (ADC) with
a dynamic range from 0V to 5.115V. What is the resolution ∆V and
the statistical uncertainty σV of the ADC? Assume that the converted
voltage follows the uniform statistical distribution.
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5.9.2 Procedure

Read completely the procedure before starting the circuit assembly, and
taking measurements to avoid repeating parts of the procedure.

Ohm’s and Kirchhoff’s Laws

Set up the circuit shown below, using the nominal values of the resistors

1R =1.5kΩ

0R =1.0kΩ

2R =4.7kΩ3R =2.2kΩ

V

I

+

B

A

C

D

A

A

A

2

1

0

Using a DMM or the DAQ system, do the following points:

1. Measure the resistances R0, R1, R2, R3 and Rtot seen the from the points
C and D. Verify the resistance series and parallel laws for Rtot.

2. Verify Kirchhoff’s voltage law for a loop containing the voltage source.

3. Verify Kirchhoff’s current law for one of the nodes.

4. Using the DAQ system, and varying the voltage V , verify Ohm’s law
for the resistor R1. Obtain the value of R1 by fitting a properly taken
set of data .

5. Connect a resistive load with resistance RL “ad libitum” between A
and B, and measure the voltage difference across it.



74 CHAPTER 5. DIRECT CURRENT NETWORK THEORY

Thévenin Equivalent Circuit

Using the previous circuit do the following points:

1. Using a proper connection of the resistors of your circuit, build the
Thévenin equivalent circuit seen from terminals A and B.

2. Verify the equivalence with the previous circuit by connecting the
same resistive load RL you used before.

Ideal Voltage Source

Using the available voltage source do the following points:

1. Determine the internal resistance of the source.

2. Find for which interval of the resistive load, the voltage source is
ideal within 5% (i.e. the maximum voltage difference across the load
5% of voltage difference with no load).
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5.10 Second Laboratory Week
Sections 4, and 6 of this chapter are required to complete the first labora-
tory week.

Depending on the application, semiconductor diodes can have quite
different parameters. Silicon diodes used in the laboratory typically have
η ' 2 for currents below ∼ 100mA, breakdown voltage Vb ' −50V, and
reverse saturation current I0 ∼ 10µA.

5.10.1 Pre-Laboratory Problems
1. Consider the RC circuit made of the series of a capacitor with capaci-

tance C and a resistor of resistance R. Demonstrate that voltage V (t)
across capacitor, which is discharged through the resistor satisfies
the following equation

V (t) = V0e
−t/τ , τ = RC,

where V0 is the initial voltage.

+

−
V0

C

R

V(t)

2. Choose the values of R and C, with R � 1MΩ to get the time con-
stant to be τ = 1s. Prove that τ has the dimension of a time (hint: use
eq.(5.2) and (5.1)).

3. With τ = 1µs determine the time t∗ for the voltage V (t) to become
less than 1% of the initial value V0. Supposing that the sampling rate
of a data acquisition system is 1000 samples/s, what is the minimum
value of τ necessary to measure a variation of 1% of V (t)?

4. In semi-conductor materials like germanium and silicon the number
of charge carriers n, strongly depends on the absolute temperature
T , i.e. n(T ) = n0e

−Eg/kbT , where kb = 8.6 ·10−5eV/K is the Boltzmann
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constant and Eg is the gap from the conduction band and the valence
band. Given Eg = 0.67eV for germanium, calculate the ratio of n at
body temp to n at room temp. If R ∝ 1/n, what is the ratio of the R
at the two temperatures? Repeat for silicon where Eg = 1.1eV.

5.10.2 Procedure

RC Circuit Time Constant

1. Determine the time constant τ of the RC circuit using the following
set-up

NC: Normally Closed
NO: Normally Open
COM: Common

+

−
C

A0COM

+5V

Relay
NC

NO

R

Choose R and C such that τ ' 1s. The uncertainty on the time is
σt = 2ms.

2. Compare the value of τ obtained in point one with the RC value
obtained measuring directly the resistance and the capacitor.

3. Rearranging the previous circuit, redo the time constant τ measure-
ment for a charging capacitor .

4. Compare the two values of τ indirectly measured.

Semiconductor Diodes

Make the following circuit, choosing the value of the resistor to limit the
maximum current to ∼ 5mA, and answer the next points:
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‘

+

−
V

R

A

A1

0

1. Determine the polarity and the turn on voltage of a germanium diode
and a silicon diode .

2. Determine the Boltzmann constant in eV (electron-volt) units from
the V-I characteristic of a silicon diode. Assume the parameter ηsi =
2.0 ± 0.1 for the silicon diode.

3. Assuming the previous measured value of the Boltzmann constant
determine the parameter ηge of a germanium diode.

4. Calculate the value of ηge for the germanium diode considering the
standard value of k ' 1.381 · 10−23J/K, and then compare it with the
previous measured value of ηge.



78 CHAPTER 5. DIRECT CURRENT NETWORK THEORY



Chapter 6

Alternating Current Network
Theory

In this chapter we will study the properties of electronic networks propa-
gating sinusoidal currents (alternate currents/AC). In this case, voltage or
current sources produce sinusoidal waves whose frequency can be ideally
changed from 0 to ∞. The AC analysis of such circuits is valid once the
network is at the steady state, i.e. when the transient behavior (such as
that produced by closing or opening switches) is extinguished.

In general, if we have a sinusoidal signal (voltage, or current) applied
to a circuit having at least one input and one output, we will expect a
change in amplitude and phase at the output. The determination of these
quantities for quite simple circuits can be very complex. It is indeed im-
portant to develop a convenient representation of sinusoidal signals to
simplify the analysis of circuits in the AC regime.

6.1 Symbolic Representation of a Sinusoidal Sig-
nals, Phasors

A sinusoidal quantity (a sinusoidal current or voltage for example) ,

A(t) = A0 sin(ωt + ϕ),

is completely characterized by the amplitude A0, the angular frequency ω,
and the initial phase ϕ. The phase ϕ corresponds to a given time shift t∗ of
the sinusoid (ωt∗ = ϕ ⇒ t∗ = ϕ/ω).

79
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0A

t0

t =

T=2π/ω

ϕ/ω*

0 x

ϕ

ϕ+ω
A(t)

A(0)

jy

A(t)

A

t

Figure 6.1: Sinusoidal quantity A(t) and its phasor representation ~A at the
initial time t = 0 and at time t.

We can indeed associate to A(t) an applied vector ~A of the complex
plane with modulus | ~A| = A0 ≥ 0, rotating counter-clock wise around
the origin O, with angular frequency ω, and initial angle ϕ (see figure 6.1).
This vector is called phasor.

The complex representation of the phasor is indeed1

~A = A0e
j(ωt+ϕ), j =

√

−1,

or
~A = x + jy,

{

x = A0 cos(ωt + ϕ)
y = A0 sin(ωt + ϕ)

Extracting the real and the imaginary part of the phasor, we can easily
compute its amplitude A0 and phase ϕ, i.e.

| ~A| =
√

<[ ~A]2 + =[ ~A]2 ϕ = arg
[

~A
]

= arctan





=[ ~A]

<[ ~A]



 , (t = 0)

and reconstruct the real sinusoidal quantity. It is worthwhile to notice that
in general, amplitude A0 and phase ϕ are functions of the frequency.

The convenience of this representation will be evident, once we con-
sider the operation of derivation and integration of a phasor.

1To avoid confusion with the symbol of the electric current i, it is convenient to use
the symbol j for the imaginary unit.
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sV

+

−

Is

Ideal Voltage Generator Ideal Current Generator

Figure 6.2: Ideal voltage and current generators symbols.

6.1.1 Derivative of a Phasor
Computing the derivative of a phasor ~A, we get

d ~A

dt
= jωA0e

j(ωt+ϕ) = jω ~A,

i.e. the derivative of a phasor is equal to the phasor times jω.

6.1.2 Integral of a Phasor

The integral of a phasor ~A is
∫ t

t0

~Adt′ =
1

jω

[

A0e
j(ωt+ϕ) − A0e

j(ωt0+ϕ)
]

=
1

jω
~A + const.,

i.e. the integral of a phasor is equal to the phasor divided by jω plus a
constant. For the AC regime we can assume the constant to be equal to
zero without loss of generality.

Symbols for ideal sinusoidal voltage and current generators are shown
in figure 6.2.

6.2 Current Voltage Equation for Passive Ideal
Components with Phasors

Let’s rewrite the I-V characteristic for the passive ideal components using
the phasor notation. For sake of simplicity, we remove the arrow above the
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phasor symbol. To avoid ambiguity, we will use upper case letters to indi-
cate phasors, and lower case letters to indicate a generic time dependent
signal.

6.2.1 The Resistor
For time dependent signals, Ohm’s law for a resistor with resistance R is

v(t) = Ri(t).

V VI

t=0
jω

I R

Introducing the phasor I = I0e
jωt (see figure above), we get

v(t) = RI0e
jωt,

and in the phasor notation
V = R I.

Note that in this case, the frequency and time dependence is implicitly
contained in the phasor current I .

6.2.2 The Capacitor

The variation of the voltage difference dv across a capacitor with capaci-
tance C, and due to the amount of charge dQ, is

dv =
dQ

C
.

If the variation happens in a time dt, and considering that

i(t) =
dQ

dt
,
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we will have

dv(t)

dt
=

1

C
i(t), ⇒ v(t) =

1

C

∫ t

0
i(t′)dt′ + v(0).

C V

V

I

t=0
jω

I

Introducing the phasor I = I0e
jωt (see figure above), we get

v(t) =
1

C

∫ t

0
I0e

jωt′dt′ + v(0),

Using the phasor notation and supposing that for t = 0 the capacitor is
discharged, we finally get

V =
1

jωC
I, , v(0) = 0.

6.2.3 The Inductor

The induced voltage v(t) of an inductor with inductance L, is

v(t) = L
di(t)

dt
.

VL I
V t=0
jω

I



84 CHAPTER 6. ALTERNATING CURRENT NETWORK THEORY

Introducing the phasor I = I0e
jωt (see figure above), we get

v(t) = L
d

dt
I0e

jωt,

and in the phasor notation

V = jωL I.

6.3 The Impedance and Admittance Concept.

Let’s consider a generic circuit with a port, whose voltage difference and
current are respectively the phasors V = V0e

j(ωt+ϕ), and I = I0e
j(ωt+ψ). The

ratio Z between the voltage difference and the current

Z(ω) =
V

I
=

V0

I0

ej(ϕ−ψ).

is said to be the impedance of the circuit.
The inverse

Y (ω) =
1

Z(ω)

is called the admittance of the circuit.
For example, considering the results of the previous subsection, the

impedance for a resistor, a capacitor, and an inductor are respectively

ZR = R, ZC(ω) =
1

jωC
, ZL(ω) = jωL,

and the admittances are

YR =
1

R
, YC(ω) = jωC, YL(ω) =

1

jωL
.

In general, the impedance and the admittance of a circuit port is a com-
plex function, which depends on the angular frequency ω. Quite often
they are graphically represented by plotting their magnitude and phase .
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6.3.1 Impedance in Parallel and Series
It can be easily demonstrated that the same laws for the total resistance of
a series or a parallel of resistors hold for the impedance

Ztot = Z1 + Z2 + ... + ZN , (impedances in series)

1

Ztot

=
1

Z1

+
1

Z1

+ ... +
1

ZN

, (impedances in parallel)

6.3.2 Ohm’s Law for Sinusoidal Regime
Thanks to the impedance concept, we can generalize Ohm’s law and write
the fundamental equation (Ohm’s law for sinusoidal regimes)

V (ω) = Z(ω)I(ω).

6.4 Two-port Network

IoutIin
Vin VoutωH(  )

−

+

−

+

Figure 6.3: Two-port network circuit representation. The Voltage differ-
ence signs and current directions are conventional.

A linear circuit with one input and one output is called a two-port net-
work (see figure 6.3).

To characterize the behavior of a two-port network, we can study the
response of the output Vo as a function of the angular frequency ω of a
sinusoidal input Vi.

In general, we can write

Vo(ω) = H(ω)Vi(ω), or H(ω) =
Vo(ω)

Vi(ω)
,



86 CHAPTER 6. ALTERNATING CURRENT NETWORK THEORY

R

C
IVin Vout

I

Figure 6.4: RC low-pass filter circuit.

where the complex function H(ω) is called the transfer function of the two-
port network. The transfer function contains the information of how the
amplitude and the phase of the input changes when it reaches the out-
put. Knowing the transfer function of a two-port network, we characterize
completely the circuit2. The definition of H(ω) suggests the way of mea-
suring the transfer function. In fact, exciting the input with a sinusoidal
wave we can measure the amplitude and the phase lead or lag respect to
the input of the output signal.

To graphically represent H(ω), it is common practice to plot the mag-
nitude |H(ω)| in a double logarithmic scale, and the phase arg [H(ω)] in a
semilogarithmic scale for the angular frequency.

It is important to notice that it is not necessary to have an ideal sinu-
soidal generator to make the transfer function measurement. In fact, if the
input amplitude changes with the frequency the ratio between the output
will not change. The same is true for the phase, i.e. if the input phase
changes the difference with the output phase cannot change.

Let’s study three common two port networks, the RC low-pass filter,
the RC high-pass filter and the LCR series resonant circuit.

2A much deeper understanding of the transfer function , requires the concept of the
Fourier transform and the Laplace transform.
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Figure 6.5: RC low-pass filter circuit transfer function.

6.4.1 The RC Low-Pass Filter

Figure 6.4 shows the RC low-pass filter circuit. The input and the output
voltage differences are respectively3

Vin = ZinI =

(

R +
1

jωC

)

I,

Vout = ZoutI =
1

jωC
I,

and the transfer function is indeed

H(ω) =
Vout
Vin

=
1

1 + jτω
, τ = RC.

or
H(ω) =

1

1 + jω/ω0

, ω0 =
1

RC
.

3Vout as function of Vin can be directly calculated using the voltage divider equation.
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Computing the magnitude and phase of H(ω), we obtain

|H(ω)| =
1√

1 + τ 2ω2

arg(H(ω)) = − arctan
(

ω

ω0

)

Figure 6.5 shows the magnitude and phase of H(ω). The parameter
τ and ω0 are called respectively the time constant and the angular cut-off
frequency of the circuit. The cut-off frequency is the frequency where the
output Vout is attenuated by a factor 1/

√
2.

It is worthwhile to analyze the qualitative behavior of the capacitor
voltage difference Vout at very low frequency and at very high frequency.

For very low frequency the capacitor is an open circuit and Vout is es-
sentially equal to Vin. for high frequency the capacitor acts like a short
circuit and Vout goes to zero.

The capacitor produces also a delay as shown in the phase plot. At
very low frequency the Vout follows Vin (they have the same phase). The
output Vout loses phase (ωt = ϕ ⇒ t = ϕ/ω) when the frequency increases
the frequency Vout starts lagging due to the negative phase ,ϕ, and then
reaches a maximum delay due to a phase shift of −π/2.

6.4.2 The CR High-Pass Filter

Figure 6.6 shows the CR high-pass filter circuit. The input and the output
voltage differences are respectively

Vin = ZinI =

(

R +
1

jωC

)

I,

Vout = ZoutI = RI,

and indeed the transfer function is

H(ω) =
Vout
Vin

=
jωτ

1 + jτω
, τ = RC.

or
H(ω) =

jω/ω0

1 + jω/ω0

, ω0 =
1

RC
.
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IVin VoutR
C

I

Figure 6.6: CR high pass filter circuit

Computing the magnitude and phase of H(ω), we obtain

|H(ω)| =
τω√

1 + τ 2ω2
,

arg(H(ω)) = arctan
(

ω0

ω

)

Figure 6.7 shows the magnitude and phase of H(ω). The definitions in
the previous subsection for τ, and ω0 hold for the RC high-pass filter.
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Figure 6.7: CR high pass filter circuit transfer function.
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Vin
Vout

LR

C

Figure 6.8: LCR series resonant circuit.

6.4.3 The LCR Series Resonant Circuit
Figure 6.8 shows the LCR series circuit. Considering the voltage difference
across the capacitor as the circuit output, we will have

Vin =

(

R + jωL +
1

jωC

)

I,

Vout =
1

jωC
I ,

and the transfer function will be

HC(ω) =
1

jωRC − ω2LC + 1
.

Computing the magnitude and phase of H(ω), we obtain

|HC(ω)| =
1

√

(1 − ω2LC)2 + (ωRC)2

arg [HC(ω)] = arctan
(

ωRC

ω2LC − 1

)

For sake of simplicity It is convenient to define the two following quan-
tities

ω2
0 =

1

LC
, Q =

1

R

√

L

C
.

The parameter Q is called the quality factor of the circuit. Considering
the previous definitions, and after some algebra HC(ω) can be rewritten as
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HC(ω) =
ω2

0

−ω2 + jω ω0

Q
+ ω2

0

. (6.1)

The magnitude has an absolute maximum for

ω2
C = ω2

0

(

1 − 1

2Q2

)

, (angular resonant frequency)

and the maximum is

|HC(ωC)| =
Q

√

1 − 1
2Q2

, if Q � 1 ⇒ ωC ' ω0, |HC(ωC)| ' Q

Far from resonance the approximate behavior of |HC(ω)| is

ω � ωC ⇒ |HC(ω)| ' 1

ω � ωC ⇒ |HC(ω)| ' ω2
0

ω2

Figure 6.9 shows the magnitude and phase of HC(ω).

Bode Diagram
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Figure 6.9: Transfer Function HC(ω)of the LCR series resonant circuit .
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6.5 First Laboratory Week

6.5.1 Pre-laboratory Exercises

1. Calculate the total impedance of a series of a resistor with a capacitor
and for a parallel of a resistor with a capacitor. Do your results con-
firm the statement that capacitors behave as a short circuit at high
frequencies and as an open circuit at low frequencies ?

2. Calculate the magnitude of the total impedance for a series of a re-
sistor with a capacitor having R = 10kΩ, C = 2.5nF, and v = 20kHz.
Calculate the same quantity for a parallel of a resistor with a capaci-
tor having R = 10MΩ, C = 30pF, and v = 20kHz.

3. The circuit shown below includes the impedance of the input chan-
nel of the CRT oscilloscope, and Vs is indeed the real voltage mea-
sured by the instrument.

Oscilloscope Input
Stage

I

Cs sRVin Vs

R

C VC

Find the voltage Vs(ω) , and the angular cut-off frequency ω0 of the
transfer function Vs/Vin( i.e. the value of ω for which |Vs/Vin| =
1/
√

2).
Show that for ω = 0 the Vs(ω) formula simplifies and becomes the
resistive voltage divider equation.
Demonstrate that the conditions to neglect the input impedance of
the oscilloscope are the following :

C � Cs, R � Rs

4. Considering the previous circuit, calculate the value of R to obtain
Vin ' Vs with a fractional systematic error of 1%, if ω = 0rad/s and
Rs = 1MΩ.
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5. Read the first two sections of the oscilloscope notes (see appendix B).

6. Considering the figure below (a “snapshot” of an oscilloscope dis-
play), determine the peak to peak amplitude, the DC offset, the fre-
quency of the two sinusoidal curves, and the phase shift between
the two curves (channels horizontal axis position is indicated by an
arrow and the channel name on the right of the figure).

0 1 2 3 4 5 6 7 8 9 10
Horizontal Sensitivity 1ms/div (1div=distance between thicker lines)
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6.5.2 Procedure

Read carefully the text before starting the laboratory measurements.
Note that instead of the angular frequency ω, this procedure reports

the frequency ν (ω = 2πν), which is more often used in laboratory mea-
surements.

“BNC” cables and wires terminated with “banana” connectors are avail-
able to connect circuits to the available instruments.
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BNC4 cables, a diffused type of radio frequency (RF) coaxial cable, have
an intrinsic capacitance due to their geometry as shown in the figure below

C0

A

B

C

D

A C

DB

They have typical linear density capacitance ∆C/∆l ∼ 100pF/m. Sin-
gle wires have usually smaller capacitance than BNC cables. Unfortu-
nately, their capacitance strongly depends on how they are positioned one
respect to the others.

• Build a RC low-pass filter or a CR high-pass filter with a cut-off fre-
quency ν0 between 1kHz and 100kHz, using values for R and C,
which makes the input impedance of the oscilloscope Zsnegligible
compared to the impedance of your circuit.

• Measure the transfer function H(ν) of your circuit by measuring
|H(ν)|, and arg [H(ν)]. Then, fit the experimental data with the proper
theoretical curves.

• Experimentally find |H(ν0)| and arg [H(ν0)] (at the cut-off frequency
ν0), and compare them with the theoretical data.

• Build a RC low-pass filter using a capacitance C comparable with the
input capacitance Cs of the oscilloscope, and check the perturbation
induced by the instrument at the cut-off frequency ν0.

6.6 Second Laboratory Week

6.6.1 Pre-laboratory Exercises
1. Considering an inductor made of a coil with large inductance (L ∼

10mH), resistance RL = 80Ω, wire diameter d = 100µm, and resis-
4“BNC” seems to stand for Bayonet Neill Concelman (named after Amphenol engi-

neer Carl Concelman). Other sources claim that the acronym means British Navy Con-
nector. What is certain is that the BNC connector was developed in the late 1940’s as a
miniature version of the type C connector (what does the “C” stand for ?)



6.6. SECOND LABORATORY WEEK 95

tivity of ρ ' 16nΩ · m (copper), determine the length l of the coil
wire.

2. Demonstrate that the magnitude of the LCR series transfer function
HC(ω) has a maximum for ω = ωC and the maximum is equal to the
quality factor Q, (Q � 1).

3. Supposing that R, ω0, and Q of an LCR series circuit are known de-
termine L, and C.

4. Compute the Magnitude and phase of equation (6.1).

5. Determine the phase of the LCR series transfer function HC(ω) at
ω = 0, at the angular resonant frequency ωC , and for ω → ∞.

6. Determine the capacitance C of a LCR series circuit necessary to have
a resonant frequency νC = 20kHz if L = 10mH, and R = 80Ω. Then,
calculate the quality factor of the LCR series circuit.

6.6.2 Procedure

Vs
C VC

RLLRs

• Construct a LCR series resonant circuit above with a resonant fre-
quency νC of about 20kHz. Note that the resistance Rs is the internal
resistance of the function generator, and the resistance RL is the re-
sistance of the inductor. Use a mylar capacitor to make the circuit.

• Measure magnitude and phase of the transfer function

HC(ν) =
VC
Vs

.
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• Fitting the magnitude and phase of HC , determine the frequency ν0

and the quality factor Q .

• Experimentally find the resonant frequency νC where the maximum
of |HC(ν)| occurs and compare it with the value indirectly obtained
from the fits.

• Experimentally find the resonant frequency νC where the proper phase
shift for the resonant frequency occurs and compare it with the value
obtained from the fits.

• Directly measuring the values of R, L, and C, calculate ν0, and Q and
compare with the values obtained from the fits.

• Assuming that the direct measurement of R is correct, using ν0 and
Q values obtained from the fits, estimate L and C.



Appendix A

Data Acquisition System
“Experimenter”

The “Experimenter” device is a very simple data acquisition system (DAQ)
which allows to acquire several channels with a low data rate of 20sam-
ples/s. This are its main characteristics:

• maximum sampling frequency νs = 100samples/s

• Timer resolution ∆T = 2ms

• Input channels Characteristics

– Number : 4
– Number of bits: n = 10

– range : unipolar from 0V to 5.115V ⇒ ∆Vi = 5.115V

– resolution δVi = ∆Vi/2n = 5mV

• Output Channels Characteristics

– Number: 2
– Number of bits: n = 8

– type : unipolar
– range from 0 to 5V, ⇒ ∆Vo = 5V

– resolution: δVo = ∆Vo/2n ' 20mV (not linear)
– maximum current output: 1mA

97
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Figure A.1: Output channel characteristics

A.1 Output Channel Characteristics

The output channel control is implemented using the so called pulse with
modulation (PWM) technique . Essentially, a PWM voltage source works
by changing the time that the pulse is on (the duty cycle), and sending the
pulse to a low pass filter.

The non linearity of the output channel is clearly shown in the plot
shown in figure A.1. The reason of such non-linearity comes from the way
that PWM is implemented.
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A.2 ExperTerm Program

The “ExperTerm” is a terminal interface to communicate via RS232 port to
the DAQ. This is the list of the available commands:

• a ch0 [ch1] ... print ADC sampled value of channel ch0 ch1 ... Exam-
ple: a 1

• A ch0 [ch1] ... continuously print ADC sampled values of channel
ch0 ch1 ... until a ctrl c is pressed. Example: A 1 0 3

• e ch val set voltage source "ch" to "val". Example: e 0 124

• h print this help screen q quit program

A.3 ExperDAQ Program

The “ExperDAQ” is a command line program for continuous data acquisi-
tion with the Experimenter. It allows to specify the acquisition parameters
(input channels, number of samples, sampling frequency ) to change in-
ternal relay status, and to set one voltage source. The following text is the
program usage help:

usage: ExperDAQ [-v] [-p Port,BaudRate,Parity,Bits,StopBit] [-o Chan-
nel,A,B,N] [-r] ChannelList Samples SamplingRate Averages FileName

Parameters between square brackets are optional.

• -v verbose mode.

• -p serial port configuration example: -p 1,9600,0,8,1

• -o Channel,A,B,N source output settings. Trailing spaces are not al-
lowed

– Channel: 0 or 1

– A: initial value from 0 to 255

– B: final value from 0 to 255
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– N: number of step to go from A to B. The step is done every
1/SampleFrequency

• -r change relay status before data acquisition and restore previous
status after the acquisition

• ChannelList: list of channels to acquire from 0 to 7. Values are sepa-
rated with a comma. Trailing spaces are not allowed. Example: 3,0,1

• Samples number: samples to acquire

• SamplingRate: samples per seconds to acquire from 1 to 20

• Averages: number of averages. 0 for no averages. The data used to
compute the average are collected at the SamplingRate

• FileName: filename containing the acquired data. First column is
the time. The other columns are the channels values specified in the
ChannelList

Example:
ExperDAQ -r -o0,0,255,20 0,1,2 20 10 0 data.txt

The previous example does the following: change relay status during
the acquisition, sweep the voltage source 0 from 0 to 255, acquires 20 sam-
ples of ADC channels 0,1,2 with a sampling rate of 10sample/s, does not
perform averages, and finally saves the data into the file data.txt.



Appendix A

The Vernier

The vernier1 is essentially a pair of linear scales (see figure A.2), one the
auxiliary scale which slides parallel along the other scale, the main scale,
and acts like a “mechanical scale magnifier”. Essentially, it allows to read
fractions 1/n of the main scale divisions using the maximum possible res-
olution of the scale.

RSRSRTST
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U
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WWW
W
XXX
X

YSYSYZSZSZ[S[\S\ ]S]S]^S^S^

10 1u 20 30

4/4u1/4u

0

10 2 3 4

Figure A.1: Example of a vernier with k = 5, n = 4,and δx = 1/4units. The two
scales are aligned and the 4-th auxiliary division is aligned to the kn − 1 = 19-th
division of the main scale.

Each auxiliary scale division is k − 1/n shorter than k divisions of the
main scale. This means that if we align the first auxiliary scale division
to the k-th division of the main scale, the distance x between the origin
of the two scales will be x = 1/nunits. If we align the second division

1Pierre Vernier XVII sec. mathematician and scientist inventor of the so called vernier
caliper.
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Figure A.2: Example of a vernier measurement with k = 5, n = 4 ⇒ ∆x =

1/4units.

then x = 2/nunits. In general, aligning the m-th division of the auxiliary
scale to the m times k-th division of the main scale , will make the distance
between the origin of the two scales equal to x = m/n.

A.1 Measuring with a Vernier
If we perform a measurement of a physical quantity x (see figure A.2) and
we have the auxiliary scale zero after the N division of the main scale and
the m-th auxiliary scale division is the division aligned to one of the main
scale divisions, we will have

x =
(

N +
m

n

)

units .

Because we cannot identify an interval were the measurement lies in,
the read error δx to assign to x is

δx =
1

n
units .

In the example of figure A.2, we have










N = 8
m = 3
n = 4

⇒ x =
(

8 +
3

4

)

= 8.75 = (8.8 ± 0.3) units .

The 1/n factor and the units should be printed out on the vernier.
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The resolution limit of a vernier, depends on the accuracy2 of tracing
both scales. If we have more than one trace coincident, the instrument
claimed resolution is illusory.

Calipers are one of the most common instruments that uses a vernier.

A.2 Probability Density Function Using a Vernier
Let’s suppose that we use an instrument with a vernier to measure a physi-
cal quantity x. In this case, we cannot assume that x follows a uniform PDF
as we did for measurements performed using single linear scales. In fact,
because we look for the best aligned divisions pair to perform the mea-
surement, we cannot identify an interval were the measurements lies in. If
we could, it means that the vernier is not properly designed or manufac-
tured. In other words, the instrument is practically unusable at least with
the resolution claimed by the manufacturer.

2The resolution depends on the technology used to manufacture the two scales. More-
over, the dynamic range limits the instrument resolution because it is hard to keep a given
accuracy for an arbitrary length of the scale.
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Appendix B

The Cathode Ray Tube
Oscilloscope

B.1 The Cathode Ray Tube Oscilloscope
The cathode ray tube oscilloscope is essentially an analog1 instrument that is
able to measure time varying electric signals. It is made of the following
functional parts (see figure B.1):

• the cathode ray tube (CRT),

• the trigger,

• the horizontal input,

• the vertical input,

• time base generator.

Let’s study in more detail each component of the oscilloscope.

B.1.1 The Cathode Ray Tube
The CRT is a vacuum envelope hosting a device called an electron gun ,
capable of producing an electron beam, whose transverse position can be
modulated by two electric signals (see figures B.1 and B.7).

1Hybrid instruments combining the characteristics of digital and analog oscilloscopes,
with a CRT, are also commercially available.
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When the electron gun cathode is heated by wire resistance because
of the Joule effect it emits electrons . The increasing voltage differences
between a set of shaped anodes and the cathode accelerates electrons to a
terminal velocity v0 creating the so called electron beam.

Ramp
Generator

CATODE RAY TUBE (CRT)

V/div

Preamplifier Amplifier

INPUT CHANNEL

TRIGGER

Line(60Hz)

External

Internal

LevelSource s/div

TIME BASE GENERATOR

Figure B.1: Oscilloscope functional schematics
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The beam then goes through two orthogonally mounted pairs of metal-
lic plates. Applying voltage difference to those plates Vx and Vy, the beam
is deflected along two orthogonal directions (x and y ) perpendicular to
its direction z. The deflected electrons will hit a plane screen perpendicu-
lar to the beam and coated with florescent layer. The electrons interaction
with this layer generates photons, making the beam position visible on the
screen.

Sawtooth
signal

v (t)
y

t

t

t

T T

Trigger

Figure B.2: Periodic Signal triggering.

B.1.2 The Horizontal and Vertical Inputs

The vertical and horizontal plates are independently driven by a variable
gain amplifier to adapt the signals vx(t), and vy(t) to the screen range. A
DC offset can be added to each input to position the signals on the screen.
These two channels used to drive the signals to the plates signals are called
horizontal and vertical inputs of the oscilloscope.

In this configuration the oscilloscope is an x-y plotter.
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C0

Cs Rs Deflection 
Plates

Amplifier
High VoltageGND

AC

DC

Input

Pre−Amplifier

Figure B.3: Oscilloscope input impedance representation using ideal com-
ponents (gray box). Input channel coupling is also shown.

B.1.3 The Time base Generator

If we apply a sawtooth signal Vx(t) = αt to the horizontal input, the hori-
zontal screen axis will be proportional to time t. In this case a signal vy(t)
applied to the vertical input, will depict on the oscilloscope screen the sig-
nal time evolution.

The internal ramp signal is generated by the instrument with an am-
plification stage that allows changes in the gain factor α and the interval
of time shown on the screen. This amplification stage and the ramp gen-
erator are called the time base generator.

In this configuration, the horizontal input is used as a second indepen-
dent vertical input, allowing the plot of the time evolution of two signals.

Visualization of signal time evolution is the most common use of an
oscilloscope.

B.1.4 The Trigger

To study a periodic signal v(t) with the oscilloscope, it is necessary to syn-
chronize the horizontal ramp Vx = αt with the signal to obtain a steady
plot of the periodic signal. The trigger is the electronic circuit which pro-
vides this function. Let’s qualitatively explain its behavior.

The trigger circuit compares v(t) with a constant value and produces
a pulse every time the two values are equal and the signal has a given
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slope. The first pulse triggers the start of the sawtooth signal of period2 T
, which will linearly increase until it reaches the value V = αT , and then
is reset to zero. During this time, the pulses are ignored and the signal
v(t) is plotted for a duration time T. After this time, the next pulse that
triggers the sawtooth signal will happen for the same previous value and
slope sign of v(t), and the same portion of the signal will be re-plotted on
the screen.

B.2 Oscilloscope Input Impedance
A good approximation of the input impedance of the oscilloscope is shown
in the circuit of figure B.3. The different input coupling modes ( DC AC
GND ) are also represented in the circuit.

The amplifying stage is modeled using an ideal amplifier (infinite in-
put impedance) with a resistor and a capacitor in parallel to the amplifier
input.

The switch allows to ground the amplifier input and indeed to verti-
cally set the origin of the input signal (GND position), to directly couple
the input signal (DC position), or to mainly remove the DC component of
the input signal (AC position).

B.3 Oscilloscope Probe
An oscilloscope probe is a device specifically designed to minimize the
capacitive and resistive load added when the instrument is connected to
the circuit. The price to pay is an attenuation of the signal that reaches the
oscilloscope input3.

Let’s analyze the behavior of a passive probe. Figure B.4 shows the
schematics of the equivalent circuit of a passive probe and of the input
stage of an oscilloscope. The capacitance of the probe cable can be consid-
ered included in Cs

Considering the voltage divider equation, we have

H(jω) =
Vs
Vi

=
Zs

Zp + Zs
, (B.1)

2In general, the sawtooth signal period T and the period of v(t) are not equal.
3Active probes can partially avoid this problems by amplifying the signal.
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Figure B.4: Oscilloscope input stage and passive probe schematics.The
equivalent circuit made of ideal components for the probe shielded cable
is not shown.

where
1

Zs

= jωCs +
1

Rs

,
1

Zp

= jωCp +
1

Rp

,

and then

Zs =
Rs

jωτs + 1
, Zp =

Rp

jωτp + 1
.

Defining the following parameters

τp = CpRp, α =
Rs

Rs + Rp

, β =
Cp

Cs + Cp

,

and after some tedious algebra, equation (B.1) becomes

H(jω) = α
1 + jωτp
1 + jω α

β
τp

,

which is the transfer function from the probe input to the oscilloscope in-
put before the ideal amplification stage.

The DC and high frequency gain of the transfer function H(jω) are
respectively

H(0) = α, H(∞) = β.
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Figure B.5: Qualitative transfer function from the under compensated
probe input to the oscilloscope input before the ideal amplification stage.
As usual, the oscilloscope input is described having an impedance Rs||Cs.

The numerator and denominator of H(jω) are respectively equal to
zero, (the zeros and poles of H) when

ω = ωz = j
1

τp
, ω = ωp = j

β

α

1

τp
.

Figure B.5 shows the qualitative behavior of H for α
β

> 1.

B.3.1 Probe Frequency Compensation

By tuning the variable capacitor Cp of the probe, we can have three possi-
ble cases

α

β
< 1 ⇒ over-compensation

α

β
= 1 ⇒ compensation
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α

β
> 1 ⇒ under-compensation

if α < β the transfer function attenuates more at frequencies above ωz,
and the input signal Vi is distorted.

if α = β the transfer function is constant and the input signal Viwill be
undistorted, and attenuated by a factor α.

if α > β the transfer function attenuates more at frequencies below ωp
and the input signal Viis distorted.

The ideal case is indeed the compensated case, because we will have
increased the input impedance by a factor α without distorting the signal.

The probe compensation can be tuned using a signal, which shows a
clear distortion when it is filtered. A square wave signal is very useful in
this case because, it shows a different distortion if the probe is under or
over compensated. Figure B.6 sketches the expected square wave distor-
tion for the two un-compensated cases.

It is worthwhile to notices that
α

β
= 1, ⇒ Rs

Rp
=

Cp

Cs
.

This condition implies that:

• the voltage difference V1 across Rs is equal the voltage difference V2

across Cs, i.e V1 = V2

• the voltage difference V3 across Rp is equal the voltage difference V4

across Cp , i.e. V3 = V4

• and indeed V1 + V2 = V3 + V4.

This means that no current is flowing through the branch AB, and we can
consider just the resistive branch of the circuit to calculate Vs. Applying
the voltage divider equation, we finally get

Vs =
Rs

Rs + R
Vi

The capacitance of the oscilloscope does not affect the oscilloscope in-
put anymore, and the oscilloscope+probe input impedance Ri becomes
greater, i.e.

Ri = Rs + Rp.
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Figure B.6: Compensation of a passive probe using a square wave. Left
figure shows an over compensated probe, where the low frequency con-
tent of the signal is attenuated. Right figure shows the under compensated
case, where the high frequency content is attenuated.
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Figure B.7: CRT tube schematics. The electron enters into the electric field
and makes a parabolic trajectory. After passing the electric field region it
will have a vertical offset and deflection angle θ.
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B.4 Beam Trajectory
Let’s consider the electron motion through one pair of plates.

The electron terminal velocity v0 coming out from the gun can be easily
calculated considering that its initial potential energy is entirely converted
into kinetic energy, i.e

1

2
µv2

0 = eV0, ⇒ v0 =

√

2
eV0

µ
,

where µ is the electron mass, e the electron charge, and V0 the voltage
applied to the last anode.

If we apply a voltage Vy to the plates whose distance is h, the electrons
will feel a force Fy = eEy due to an electric field

|Ey| =
Vy
h

.

The equation of dynamics of the electron inside the plates is

µz̈ = 0, ⇒ ż = v0,

µÿ = e|Ey|.

Supposing that Vy is constant, the solution of the equation of motion
will be

z(t) =

√

2
eV0

µ
t,

y(t) =
1

2

eVy
µh

t2.

Removing the dependency on the time t, we will obtain the electron
beam trajectory , i.e.

y =
1

4h

Vy
V0

z2,

which is a parabolic trajectory.
Considering that the electron is transversely accelerated until z = d,

the total angular deflection θ will be
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tan θ =

(

∂y

∂z

)

z=d

=
1

2

d

h

Vy
V0

.

and displacement Y on the screen is

Y (Vy) = y(z = d) + tan θD,

i.e.,

Y (Vy) =
1

2

d

h

1

V0
(
d

2
+ D)Vy.

Y is indeed proportional to the voltage applied to the plates through a
rather complicated proportional factor.

The geometrical and electrical parameters of this proportional factor
play a fundamental role in the resolution of the instrument. In fact, the
smaller the distance h between the plates, or the smaller the gun voltage
drop V0, the larger is the displacement Y . Moreover, Y increases quadrat-
ically with the electron beam distance d.

B.4.1 CRT Frequency Limit
The electron transit time through the plates determine the maximum fre-
quency that a CRT can plot. In fact, if the transit time τ is much smaller
than the period T of the wave form V (t), we have

V (t) ' constant, if τ � T,

and the signal is not distorted.
The transit time is

τ =
d

v0
= d

√

µ

2eV0
.

Supposing that


















V0 = 1kV
d = 20mm
µc2 ' 0.5MeV
e = 1eV

⇒ τ ' 1ns


